In order to analyze changes in human settlement in Xuzhou city during the past 20 years, changes in land cover and vegetation were investigated based on multi-temporal remote sensing Landsat TM images. We developed a ...In order to analyze changes in human settlement in Xuzhou city during the past 20 years, changes in land cover and vegetation were investigated based on multi-temporal remote sensing Landsat TM images. We developed a hierarchical classifier system that uses different feature inputs for specific classes and conducted a classification post-processing approach to improve its accuracy. From our statistical analysis of changes in urban land cover from 1987 to 2007, we conclude that built-up land areas have obviously increased, while farmland has seen in a continuous loss due to urban growth and human activities. A NDVI difference approach was used to extract information on changes in vegetation. A false change information elimination approach was developed based on prior knowledge and statistical analysis. The areas of vegetation cover have been in continuous decline over the past 20 years, although some measures have been adopted to protect and maintain urban vegetation. Given the stability of underground coal exploitation since 1990s, urban growth has become the major driving force in vegetation loss, which is different from the vegetation change driven by coal exploitation mainly before 1990.展开更多
Over the past few decades, built-up land in China has increasingly expanded with rapid urbanization, industrialization and rural settlements construction. The expansions encroached upon a large amount of cropland, pla...Over the past few decades, built-up land in China has increasingly expanded with rapid urbanization, industrialization and rural settlements construction. The expansions encroached upon a large amount of cropland, placing great challenges on national food security. Although the impacts of urban expansion on cropland have been intensively illustrated, few attentions have been paid to differentiating the effects of growing urban areas, rural settlements, and industrial/transportation land. To fill this gap and offer comprehensive implications on framing policies for cropland protection, this study investigates and compares the spatio-temporal patterns of cropland conversion to urban areas, rural settlements, and industrial/transportation land from 1987 to 2010, based on land use maps interpreted from remote sensing imagery. Five indicators were developed to analyze the impacts of built-up land expansion on cropland in China. We find that 42,822 km2 of cropland were converted into built-up land in China, accounting for 43.8% of total cropland loss during 1987-2010. Urban growth showed a greater impact on cropland loss than the expansion of rural settlements and the expansion of industrial/transportation land after 2000. The contribution of rural settlement expansion decreased; however, rural settlement saw the highest percentage of traditional cropland loss which is generally in high quality. The contribution of industrial/transportation land expansion increased dramatically and was mainly distributed in major food production regions. These changes were closely related to the economic restructuring, urban-rural transformation and government policies in China. Future cropland conservation should focus on not only finding a reasonable urbanization mode, but also solving the "hollowing village" problem and balancing the industrial transformations.展开更多
基金supported by the National High Technology Research and Developmemt Program of China (No2007AA12Z162)the Program for New Century Excellent Talents in University, Ministry of Education (NoNCET-06-0476)the Jiangsu Provincial 333 Engineering for High Level Talents(No.BK2006505)
文摘In order to analyze changes in human settlement in Xuzhou city during the past 20 years, changes in land cover and vegetation were investigated based on multi-temporal remote sensing Landsat TM images. We developed a hierarchical classifier system that uses different feature inputs for specific classes and conducted a classification post-processing approach to improve its accuracy. From our statistical analysis of changes in urban land cover from 1987 to 2007, we conclude that built-up land areas have obviously increased, while farmland has seen in a continuous loss due to urban growth and human activities. A NDVI difference approach was used to extract information on changes in vegetation. A false change information elimination approach was developed based on prior knowledge and statistical analysis. The areas of vegetation cover have been in continuous decline over the past 20 years, although some measures have been adopted to protect and maintain urban vegetation. Given the stability of underground coal exploitation since 1990s, urban growth has become the major driving force in vegetation loss, which is different from the vegetation change driven by coal exploitation mainly before 1990.
基金National Major Science and Technology Program for Water Pollution Control and Treatment,No.2017ZX07101001
文摘Over the past few decades, built-up land in China has increasingly expanded with rapid urbanization, industrialization and rural settlements construction. The expansions encroached upon a large amount of cropland, placing great challenges on national food security. Although the impacts of urban expansion on cropland have been intensively illustrated, few attentions have been paid to differentiating the effects of growing urban areas, rural settlements, and industrial/transportation land. To fill this gap and offer comprehensive implications on framing policies for cropland protection, this study investigates and compares the spatio-temporal patterns of cropland conversion to urban areas, rural settlements, and industrial/transportation land from 1987 to 2010, based on land use maps interpreted from remote sensing imagery. Five indicators were developed to analyze the impacts of built-up land expansion on cropland in China. We find that 42,822 km2 of cropland were converted into built-up land in China, accounting for 43.8% of total cropland loss during 1987-2010. Urban growth showed a greater impact on cropland loss than the expansion of rural settlements and the expansion of industrial/transportation land after 2000. The contribution of rural settlement expansion decreased; however, rural settlement saw the highest percentage of traditional cropland loss which is generally in high quality. The contribution of industrial/transportation land expansion increased dramatically and was mainly distributed in major food production regions. These changes were closely related to the economic restructuring, urban-rural transformation and government policies in China. Future cropland conservation should focus on not only finding a reasonable urbanization mode, but also solving the "hollowing village" problem and balancing the industrial transformations.