期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
极小负co-location模式及有效的挖掘算法 被引量:5
1
作者 王光耀 王丽珍 +1 位作者 杨培忠 陈红梅 《计算机科学与探索》 CSCD 北大核心 2021年第2期366-378,共13页
空间co-location(并置)模式是指实例在空间中频繁关联的一组空间特征的子集。在空间数据挖掘中,现有算法主要针对的是正模式的挖掘,而空间中还存在着具有强负相关性的模式,如负co-location模式,这类模式的挖掘在一些应用中同样具有重要... 空间co-location(并置)模式是指实例在空间中频繁关联的一组空间特征的子集。在空间数据挖掘中,现有算法主要针对的是正模式的挖掘,而空间中还存在着具有强负相关性的模式,如负co-location模式,这类模式的挖掘在一些应用中同样具有重要的意义。现有的负co-location模式挖掘算法的时间复杂度较高,挖掘到的模式数量巨大。针对该问题,探索了负co-location模式的向上包含性质,提出了极小负co-location模式,证明了极小负co-location模式可推导出所有频繁负co-location模式。在负co-location模式挖掘中,计算模式的表实例是制约挖掘效率的根本因素,为此提出了3个剪枝策略有效地提高了算法的效率。在真实和合成数据集上的大量实验,验证了提出方法的正确性和高效性。特别地,大量实验结果表明极小负co-location模式可将频繁负co-location模式数量压缩80%以上。 展开更多
关键词 空间数据挖掘 空间co-location模式 极小负co-location模式 向上包含 紧凑表示
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部