On the basis of hydrographic data obtained in November 28 to December 27, 1998 cruise, the calculation of the circulation in the South China Sea (SCS) is made by using the P-vector method, in combination with SSH data...On the basis of hydrographic data obtained in November 28 to December 27, 1998 cruise, the calculation of the circulation in the South China Sea (SCS) is made by using the P-vector method, in combination with SSH data from TOPEX/ERS-2 analysis. For study of the dynamical mechanism, which causes the pattern of winter circulation in the SCS, the diagnostic model (Yuan et al., 1982; Yuan and Su, 1992) is used to simulate numerically the winter circulation in the SCS. The following results have been obtained. (1) The main characteristics of the circulation systems in the central SCS are as follows: A coastal southward jet in winter is present at the western boundary near the coast of Vietnam; there is a stronger cyclonic circulation with a larger horizontal scale east of this coastal southward jet and west of 114°E; there is a weaker anti-cyclonic circulation in the central part of eastern SCS; there is a stronger and northeastward flow opposing the northeasterly monsoon between above a stronger cyclonic circulation and a weaker anti-cyclonic circulation. (2) The circulation systems in the northern SCS are as follows: 1) There is a cyclonic circulation system northwest of Luzon, and it has three centers of the cold water; 2) There is an anti-cyclonic eddy. Its center is located near(20°N, 116°40' E); 3)There is a warm and anti-cyclonic circulation south of Hainan Island; 4) There is a northeastward flow, the South China Sea Warm Current, in winter off Guangdong coast in the northern SCS. (3) In the southern SCS there is an anti-cyclonic circulation, and also there is a smaller scale cold water and cyclonic eddy. (4) The above pattern of winter circulation in the SCS agrees qualitatively with the horizontal distribution of temperature at 200 m level. (5) The dynamical mechanism which produces the above basic pattern of winter circulation is because of the following two causes: 1) The joint effect of the baroclinity and relief (JEBAR) is an essential dynamical cause; 2) The interaction between the wind stress and bo展开更多
Regardless of the slowdown in global warming during the hiatus period, sea surface temperatures(SSTs) in the southwestern Indian Ocean(SWIO) have experienced sustained decadal warming for more than two decades since t...Regardless of the slowdown in global warming during the hiatus period, sea surface temperatures(SSTs) in the southwestern Indian Ocean(SWIO) have experienced sustained decadal warming for more than two decades since the mid-1990 s. The SWIO SSTs warmed steadily during 1996–2016, causing a warming hot spot of 0.4 K decade-1 in a large region east of Madagascar. An upper-layer heat budget analysis indicated that heat advection by ocean currents was the greatest contributor to the warming of the SWIO SSTs. The existence of an anticyclonic geostrophic current along the western boundary of the SWIO tended to maintain such warming by transporting warmer water from the west into the SWIO region. In addition, net positive heat transport by ocean currents also occurred at the southern boundary of the SWIO as the climatological northward transport of cold water from the Southern Ocean weakened. This reduction in northward ocean currents at the surface was caused by local wind stress changes, leading to a southward Ekman current. Below the surface, an anticyclonic geostrophic current pattern existed around the warming center near the southeastern SWIO, which reduced the transport of cold waters from the Southern Ocean and warmed the SWIO. These processes near the two boundaries formed a self-sustaining positive feedback mechanism and favored the maintenance of sustained warming in the SWIO. More attention is needed to analyze the sustained long-lasting warming in the SWIO, as it is a unique phenomenon occurring under the background of the ongoing global warming.展开更多
基金This work is supported by the Major State Basic Research Program of China under contract No.G 1999043805.
文摘On the basis of hydrographic data obtained in November 28 to December 27, 1998 cruise, the calculation of the circulation in the South China Sea (SCS) is made by using the P-vector method, in combination with SSH data from TOPEX/ERS-2 analysis. For study of the dynamical mechanism, which causes the pattern of winter circulation in the SCS, the diagnostic model (Yuan et al., 1982; Yuan and Su, 1992) is used to simulate numerically the winter circulation in the SCS. The following results have been obtained. (1) The main characteristics of the circulation systems in the central SCS are as follows: A coastal southward jet in winter is present at the western boundary near the coast of Vietnam; there is a stronger cyclonic circulation with a larger horizontal scale east of this coastal southward jet and west of 114°E; there is a weaker anti-cyclonic circulation in the central part of eastern SCS; there is a stronger and northeastward flow opposing the northeasterly monsoon between above a stronger cyclonic circulation and a weaker anti-cyclonic circulation. (2) The circulation systems in the northern SCS are as follows: 1) There is a cyclonic circulation system northwest of Luzon, and it has three centers of the cold water; 2) There is an anti-cyclonic eddy. Its center is located near(20°N, 116°40' E); 3)There is a warm and anti-cyclonic circulation south of Hainan Island; 4) There is a northeastward flow, the South China Sea Warm Current, in winter off Guangdong coast in the northern SCS. (3) In the southern SCS there is an anti-cyclonic circulation, and also there is a smaller scale cold water and cyclonic eddy. (4) The above pattern of winter circulation in the SCS agrees qualitatively with the horizontal distribution of temperature at 200 m level. (5) The dynamical mechanism which produces the above basic pattern of winter circulation is because of the following two causes: 1) The joint effect of the baroclinity and relief (JEBAR) is an essential dynamical cause; 2) The interaction between the wind stress and bo
基金the National Key Research and Development Program of China (2016YFA0600602)National Natural Science Foundation of China (41776039)。
文摘Regardless of the slowdown in global warming during the hiatus period, sea surface temperatures(SSTs) in the southwestern Indian Ocean(SWIO) have experienced sustained decadal warming for more than two decades since the mid-1990 s. The SWIO SSTs warmed steadily during 1996–2016, causing a warming hot spot of 0.4 K decade-1 in a large region east of Madagascar. An upper-layer heat budget analysis indicated that heat advection by ocean currents was the greatest contributor to the warming of the SWIO SSTs. The existence of an anticyclonic geostrophic current along the western boundary of the SWIO tended to maintain such warming by transporting warmer water from the west into the SWIO region. In addition, net positive heat transport by ocean currents also occurred at the southern boundary of the SWIO as the climatological northward transport of cold water from the Southern Ocean weakened. This reduction in northward ocean currents at the surface was caused by local wind stress changes, leading to a southward Ekman current. Below the surface, an anticyclonic geostrophic current pattern existed around the warming center near the southeastern SWIO, which reduced the transport of cold waters from the Southern Ocean and warmed the SWIO. These processes near the two boundaries formed a self-sustaining positive feedback mechanism and favored the maintenance of sustained warming in the SWIO. More attention is needed to analyze the sustained long-lasting warming in the SWIO, as it is a unique phenomenon occurring under the background of the ongoing global warming.