期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于GAN反演的无缝图像补全技术
1
作者
喻永生
罗铁坚
《中国科学院大学学报(中英文)》
CAS
CSCD
北大核心
2024年第5期705-714,共10页
图像补全技术广泛应用于对象消除、媒体编辑,旨在平滑地恢复受损图像。基于生成对抗网络(GAN)反演将预训练的GAN模型作为有效先验,以真实的合成材质填充缺失区域。然而,现有GAN反演方法忽视了图像补全是具有硬约束的生成任务,使拼接图...
图像补全技术广泛应用于对象消除、媒体编辑,旨在平滑地恢复受损图像。基于生成对抗网络(GAN)反演将预训练的GAN模型作为有效先验,以真实的合成材质填充缺失区域。然而,现有GAN反演方法忽视了图像补全是具有硬约束的生成任务,使拼接图像有颜色、语义的不连续问题。针对此问题设计新的双向感知生成器和预调制网络来无缝地补全图像,其中双向感知生成器充分利用扩展隐藏空间,帮助模型从数据表征层面感知输入图像的非缺失区域,预调制网络利用多尺度结构进一步为风格向量提供判别性更强的语义。在Places2和CelebA-HQ数据集上进行实验,结果表明该方法不仅搭建GAN反演和图像补全之间的桥梁,而且优于目前主流算法,在FID指标上降低49.2%。
展开更多
关键词
图像补全
生成对抗网络
GAN反演
深度学习
对象消除
下载PDF
职称材料
题名
基于GAN反演的无缝图像补全技术
1
作者
喻永生
罗铁坚
机构
中国科学院大学计算机科学与技术学院
出处
《中国科学院大学学报(中英文)》
CAS
CSCD
北大核心
2024年第5期705-714,共10页
基金
中国科学院战略性先导专项(E0421104)资助。
文摘
图像补全技术广泛应用于对象消除、媒体编辑,旨在平滑地恢复受损图像。基于生成对抗网络(GAN)反演将预训练的GAN模型作为有效先验,以真实的合成材质填充缺失区域。然而,现有GAN反演方法忽视了图像补全是具有硬约束的生成任务,使拼接图像有颜色、语义的不连续问题。针对此问题设计新的双向感知生成器和预调制网络来无缝地补全图像,其中双向感知生成器充分利用扩展隐藏空间,帮助模型从数据表征层面感知输入图像的非缺失区域,预调制网络利用多尺度结构进一步为风格向量提供判别性更强的语义。在Places2和CelebA-HQ数据集上进行实验,结果表明该方法不仅搭建GAN反演和图像补全之间的桥梁,而且优于目前主流算法,在FID指标上降低49.2%。
关键词
图像补全
生成对抗网络
GAN反演
深度学习
对象消除
Keywords
image
completion
generative
adversarial
network
GAN
inversion
deep
learning
unwanted
object
removal
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于GAN反演的无缝图像补全技术
喻永生
罗铁坚
《中国科学院大学学报(中英文)》
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部