A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonl...A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.展开更多
A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman...A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman filter is similar to that in a conventional EKF. However, in every running step of the EKF the unscented transformation is running, the deterministic sample is caught by unscented transformation, then posterior mean of non- lineadty is caught by propagating, but the posterior covariance of nonlinearity is caught by linearizing. The accuracy of new method is a little better than that of the unscented Kalman filter (UKF), however, the computational time of the UEKF is much less than that of the UKF.展开更多
A new synergy tracking method of infrared and radar is presented. To improve tracking accuracy, the unscented Kalman filter (UKF), which has better nonlinear approximation ability, is adopted. In addition, to reduce...A new synergy tracking method of infrared and radar is presented. To improve tracking accuracy, the unscented Kalman filter (UKF), which has better nonlinear approximation ability, is adopted. In addition, to reduce the possibility of radar being locked-on by adverse electronic support measure (ESM), radar is under the intermittent-working state. After radar is turned off, the possible target position is estimated by a set of time polynomials, which is constructed based on the sufficient observations done before radar is turned off, the estimated values from time polynomials are compared with the current observation values from infrared to determine the time when radar is turned on. Simulation results show the method has a good tracking accuracy and effectively reduces the possibility of radar being locked-on by adverse ESM.展开更多
The unscented Kalman filter(UKF) has four implementations in the additive noise case,according to whether the state is augmented with noise vectors and whether a new set of sigma points is redrawn from the predicted s...The unscented Kalman filter(UKF) has four implementations in the additive noise case,according to whether the state is augmented with noise vectors and whether a new set of sigma points is redrawn from the predicted state(which is so-called resampling) for the observation prediction.This paper concerns the differences of performances for those implementations,such as accuracy,adaptability,computational complexity,etc.The conditionally equivalent relationships between the augmented and non-augmented unscented transforms(UTs) are proved for several sampling strategies that are commonly used.Then,we find that the augmented and non-augmented UKFs have the same filter results with the additive measurement noise,but only have the same state predictions with the additive process noise.Resampling is not believed to be necessary in some researches.However,we find out that resampling can be helpful for an adaptive Kalman gain.This will improve the convergence and accuracy of the filter when the large scale state modeling bias or unknown maneuvers occur.Finally,some universal designing principles for a practical UKF are given as follows:1) for the additive observation noise case,it's better to use the non-augmented UKF;2) for the additive process noise case,when the small state modeling bias or maneuvers are involved,the non-resampling algorithms with state whether augmented or not are candidates for filters;3) the resampling and non-augmented algorithm is the only choice while the large state modeling bias or maneuvers are latent.展开更多
A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conv...A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one.展开更多
It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems(EMSs), is vulnerable to false data injection attacks due to the undetectability...It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems(EMSs), is vulnerable to false data injection attacks due to the undetectability of those attacks using standard bad data detection techniques,which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter(UKF) in conjunction with a weighted least square(WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software.展开更多
In order to improve the filter accuracy for the nonlinear error model of strapdown inertial navigation system (SINS) alignment, Unscented Kalman Filter (UKF) is presented for simulation with stationary base and mo...In order to improve the filter accuracy for the nonlinear error model of strapdown inertial navigation system (SINS) alignment, Unscented Kalman Filter (UKF) is presented for simulation with stationary base and moving base of SINS alignment. Simulation results show the superior performance of this approach when compared with classical suboptimal techniques such as extended Kalman filter in cases of large initial misalignment. The UKF has good performance in case of small initial misalignment.展开更多
Aero-engine gas path health monitoring plays a critical role in Engine Health Management(EHM). To achieve unbiased estimation, traditional filtering methods have strict requirements on measurement parameters which som...Aero-engine gas path health monitoring plays a critical role in Engine Health Management(EHM). To achieve unbiased estimation, traditional filtering methods have strict requirements on measurement parameters which sometimes cannot be measured in engineering. The most typical one is the High-Pressure Turbine(HPT) exit pressure, which is vital to distinguishing failure modes between different turbines. For the case of an abrupt failure occurring in a single turbine component, a model-based sensor measurement reconstruction method is proposed in this paper. First,to estimate the missing measurements, the forward algorithm and the backward algorithm are developed based on corresponding component models according to the failure hypotheses. Then,a new fault diagnosis logic is designed and the traditional nonlinear filter is improved by adding the measurement estimation module and the health parameter correction module, which uses the reconstructed measurement to complete the health parameters estimation. Simulation results show that the proposed method can well restore the desired measurement and the estimated measurement can be used in the turbofan engine gas path diagnosis. Compared with the diagnosis under the condition of missing sensors, this method can distinguish between different failure modes, quantify the variations of health parameters, and achieve good performance at multiple operating points in the flight envelope.展开更多
Due to the growing penetration of renewable energies(REs)in integrated energy system(IES),it is imperative to assess and reduce the negative impacts caused by the uncertain REs.In this paper,an unscented transformatio...Due to the growing penetration of renewable energies(REs)in integrated energy system(IES),it is imperative to assess and reduce the negative impacts caused by the uncertain REs.In this paper,an unscented transformation-based mean-standard(UT-MS)deviation model is proposed for the stochastic optimization of cost-risk for IES operation considering wind and solar power correlated.The unscented transformation(UT)sampling method is adopted to characterize the uncertainties of wind and solar power considering the correlated relationship between them.Based on the UT,a mean-standard(MS)deviation model is formulated to depict the trade-off between the cost and risk of stochastic optimization for the IES optimal operation problem.Then the UT-MS model is tackled by a multi-objective group search optimizer with adaptive covariance and Levy flights embedded with a multiple constraints handling technique(MGSO-ACL-CHT)to ensure the feasibility of Peratooptimal solutions.Furthermore,a decision-making method,improved entropy weight(IEW),is developed to select a final operation point from the set of Perato-optimal solutions.In order to verify the feasibility and efficiency of the proposed UT-MS model in dealing with the uncertainties of correlative wind and solar power,simulation studies are conducted on a test IES.Simulation results show that the UT-MS model is capable of handling the uncertainties of correlative wind and solar power within much less samples and less computational burden.Moreover,the MGSOACL-CHT and IEW are also demonstrated to be effective in solving the multi-objective UT-MS model of the IES optimal operation problem.展开更多
In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sampl...In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sample particles obtained from the unscented particle filter are moved towards the maximal posterior density estimation of the target state through mean shift. On the basis of stop model in VS-IMM, hide model is proposed. Once the target is obscured by terrain, the prediction at prior time is used instead of the measurement at posterior time; in addition, the road model set used is not changed. A ground moving target indication (GMTI) radar is employed in three common simulation scenarios of ground target: entering or leaving a road, crossing a junction and no measurement. Two evaluation indexes, root mean square error (RMSE) and average normalized estimation error squared (ANEES), are used. The results indicate that when the road on which the target moving changes, the tracking accuracy is effectively improved in the proposed algorithm. Moreover, track interruption could be avoided if the target is moving too slowly or masked by terrain.展开更多
On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the ta...On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the targeted product.In this study,a novel strategy for state estimation of fed-batch fermentation process is proposed.By combining a simple and reliable mechanistic dynamic model with the sample-based regressive measurement model,a state space model is developed.An improved algorithm,swarm energy conservation particle swarm optimization(SECPSO) ,is presented for the parameter identification in the mechanistic model,and the support vector machines(SVM) method is adopted to establish the nonlinear measurement model.The unscented Kalman filter(UKF) is designed for the state space model to reduce the disturbances of the noises in the fermentation process.The proposed on-line estimation method is demonstrated by the simulation experiments of a penicillin fed-batch fermentation process.展开更多
Non-intrusive methods for eye tracking are important for many applications of vision-based human computer interaction.However,due to the high nonlinearity of eye motion,how to ensure the robustness of external interfe...Non-intrusive methods for eye tracking are important for many applications of vision-based human computer interaction.However,due to the high nonlinearity of eye motion,how to ensure the robustness of external interference and accuracy of eye tracking pose the primary obstacle to the integration of eye movements into today's interfaces.In this paper,we present a strong tracking unscented Kalman filter (ST-UKF) algorithm,aiming to overcome the difficulty in nonlinear eye tracking.In the proposed ST-UKF,the Suboptimal fading factor of strong tracking filtering is introduced to improve robustness and accuracy of eye tracking.Compared with the related Kalman filter for eye tracking,the proposed ST-UKF has potential advantages in robustness and tracking accuracy.The last experimental results show the validity of our method for eye tracking under realistic conditions.展开更多
To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive...To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF.展开更多
An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed...An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.展开更多
Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innov...Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innovation was developed.The three data-fusing approaches were analyzed and evaluated in a mathematically rigorous way.Field experiments conducted in lake further demonstrate that AUKF reduces the position error approximately by 65% compared with EKF and by 35% UKF and improves the robust performance.展开更多
State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modele...State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations.展开更多
When a pico satellite is under normal operational condi- tions, whether it is extended or unscented, a conventional Kalman filter gives sufficiently good estimation results. However, if the measurements are not reliab...When a pico satellite is under normal operational condi- tions, whether it is extended or unscented, a conventional Kalman filter gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunc- tions in the estimation system, the Kalman filter gives inaccurate results and diverges by time. This study compares two different robust Kalman filtering algorithms, robust extended Kalman filter (REKF) and robust unscented Kalman filter (RUKF), for the case of measurement malfunctions. In both filters, by the use of de- fined variables named as the measurement noise scale factor, the faulty measurements are taken into the consideration with a small weight, and the estimations are corrected without affecting the characteristic of the accurate ones. The proposed robust Kalman filters are applied for the attitude estimation process of a pico satel- lite, and the results are compared.展开更多
UKF (unscented Kalman filtering) is a new filtering method suitable to nonlinear systems. The method need not linearize nonlinear systems at the prediction stage of filtering, which is indispensable in EKF ( extended ...UKF (unscented Kalman filtering) is a new filtering method suitable to nonlinear systems. The method need not linearize nonlinear systems at the prediction stage of filtering, which is indispensable in EKF ( extended Kalman filtering) . As a result, the linearization error is avoided, and the filtering accuracy is greatly improved. UKF is applied to the attitude determination for gyroless satellite. Simulations are made to compare the new filter with the traditional EKF. The results indicate that under same conditions, compared with EKF, UKF has faster convergence speed, higher filtering accuracy and more stable estimation performance.展开更多
基金supported by the National Natural Science Foundation of China (60535010)
文摘A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm.
文摘A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman filter is similar to that in a conventional EKF. However, in every running step of the EKF the unscented transformation is running, the deterministic sample is caught by unscented transformation, then posterior mean of non- lineadty is caught by propagating, but the posterior covariance of nonlinearity is caught by linearizing. The accuracy of new method is a little better than that of the unscented Kalman filter (UKF), however, the computational time of the UEKF is much less than that of the UKF.
基金This project was jointly supported by the National Natural Science Foundation of China (60375008) ,the China Ph.D.Discipline Special Foundation (20020248029) and the China Aviation Science Foundation (02D57003)
文摘A new synergy tracking method of infrared and radar is presented. To improve tracking accuracy, the unscented Kalman filter (UKF), which has better nonlinear approximation ability, is adopted. In addition, to reduce the possibility of radar being locked-on by adverse electronic support measure (ESM), radar is under the intermittent-working state. After radar is turned off, the possible target position is estimated by a set of time polynomials, which is constructed based on the sufficient observations done before radar is turned off, the estimated values from time polynomials are compared with the current observation values from infrared to determine the time when radar is turned on. Simulation results show the method has a good tracking accuracy and effectively reduces the possibility of radar being locked-on by adverse ESM.
基金supported by the National Defense Pre-Research Foundation of China (Grant No 9140A21010908KG0162)CAST Foundation (Grant No 2009-HT-GFKD)
文摘The unscented Kalman filter(UKF) has four implementations in the additive noise case,according to whether the state is augmented with noise vectors and whether a new set of sigma points is redrawn from the predicted state(which is so-called resampling) for the observation prediction.This paper concerns the differences of performances for those implementations,such as accuracy,adaptability,computational complexity,etc.The conditionally equivalent relationships between the augmented and non-augmented unscented transforms(UTs) are proved for several sampling strategies that are commonly used.Then,we find that the augmented and non-augmented UKFs have the same filter results with the additive measurement noise,but only have the same state predictions with the additive process noise.Resampling is not believed to be necessary in some researches.However,we find out that resampling can be helpful for an adaptive Kalman gain.This will improve the convergence and accuracy of the filter when the large scale state modeling bias or unknown maneuvers occur.Finally,some universal designing principles for a practical UKF are given as follows:1) for the additive observation noise case,it's better to use the non-augmented UKF;2) for the additive process noise case,when the small state modeling bias or maneuvers are involved,the non-resampling algorithms with state whether augmented or not are candidates for filters;3) the resampling and non-augmented algorithm is the only choice while the large state modeling bias or maneuvers are latent.
文摘A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one.
基金supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia and Schneider Electric DMS NS,Serbia(No.Ⅲ-42004)
文摘It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems(EMSs), is vulnerable to false data injection attacks due to the undetectability of those attacks using standard bad data detection techniques,which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter(UKF) in conjunction with a weighted least square(WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software.
文摘In order to improve the filter accuracy for the nonlinear error model of strapdown inertial navigation system (SINS) alignment, Unscented Kalman Filter (UKF) is presented for simulation with stationary base and moving base of SINS alignment. Simulation results show the superior performance of this approach when compared with classical suboptimal techniques such as extended Kalman filter in cases of large initial misalignment. The UKF has good performance in case of small initial misalignment.
基金supported by the Fundamental Research Funds for the Central Universities(NO.NS2018018)
文摘Aero-engine gas path health monitoring plays a critical role in Engine Health Management(EHM). To achieve unbiased estimation, traditional filtering methods have strict requirements on measurement parameters which sometimes cannot be measured in engineering. The most typical one is the High-Pressure Turbine(HPT) exit pressure, which is vital to distinguishing failure modes between different turbines. For the case of an abrupt failure occurring in a single turbine component, a model-based sensor measurement reconstruction method is proposed in this paper. First,to estimate the missing measurements, the forward algorithm and the backward algorithm are developed based on corresponding component models according to the failure hypotheses. Then,a new fault diagnosis logic is designed and the traditional nonlinear filter is improved by adding the measurement estimation module and the health parameter correction module, which uses the reconstructed measurement to complete the health parameters estimation. Simulation results show that the proposed method can well restore the desired measurement and the estimated measurement can be used in the turbofan engine gas path diagnosis. Compared with the diagnosis under the condition of missing sensors, this method can distinguish between different failure modes, quantify the variations of health parameters, and achieve good performance at multiple operating points in the flight envelope.
基金supported by the State Key Program of National Natural Science Foundation of China(No.51437006)the Fundamental Research Funds for the Central Universities and the China Postdoctoral Science Foundation(No.2017M622690).
文摘Due to the growing penetration of renewable energies(REs)in integrated energy system(IES),it is imperative to assess and reduce the negative impacts caused by the uncertain REs.In this paper,an unscented transformation-based mean-standard(UT-MS)deviation model is proposed for the stochastic optimization of cost-risk for IES operation considering wind and solar power correlated.The unscented transformation(UT)sampling method is adopted to characterize the uncertainties of wind and solar power considering the correlated relationship between them.Based on the UT,a mean-standard(MS)deviation model is formulated to depict the trade-off between the cost and risk of stochastic optimization for the IES optimal operation problem.Then the UT-MS model is tackled by a multi-objective group search optimizer with adaptive covariance and Levy flights embedded with a multiple constraints handling technique(MGSO-ACL-CHT)to ensure the feasibility of Peratooptimal solutions.Furthermore,a decision-making method,improved entropy weight(IEW),is developed to select a final operation point from the set of Perato-optimal solutions.In order to verify the feasibility and efficiency of the proposed UT-MS model in dealing with the uncertainties of correlative wind and solar power,simulation studies are conducted on a test IES.Simulation results show that the UT-MS model is capable of handling the uncertainties of correlative wind and solar power within much less samples and less computational burden.Moreover,the MGSOACL-CHT and IEW are also demonstrated to be effective in solving the multi-objective UT-MS model of the IES optimal operation problem.
文摘In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sample particles obtained from the unscented particle filter are moved towards the maximal posterior density estimation of the target state through mean shift. On the basis of stop model in VS-IMM, hide model is proposed. Once the target is obscured by terrain, the prediction at prior time is used instead of the measurement at posterior time; in addition, the road model set used is not changed. A ground moving target indication (GMTI) radar is employed in three common simulation scenarios of ground target: entering or leaving a road, crossing a junction and no measurement. Two evaluation indexes, root mean square error (RMSE) and average normalized estimation error squared (ANEES), are used. The results indicate that when the road on which the target moving changes, the tracking accuracy is effectively improved in the proposed algorithm. Moreover, track interruption could be avoided if the target is moving too slowly or masked by terrain.
基金Supported by the National Natural Science Foundation of China(20476007 20676013)
文摘On-line estimation of unmeasurable biological variables is important in fermentation processes,directly influencing the optimal control performance of the fermentation system as well as the quality and yield of the targeted product.In this study,a novel strategy for state estimation of fed-batch fermentation process is proposed.By combining a simple and reliable mechanistic dynamic model with the sample-based regressive measurement model,a state space model is developed.An improved algorithm,swarm energy conservation particle swarm optimization(SECPSO) ,is presented for the parameter identification in the mechanistic model,and the support vector machines(SVM) method is adopted to establish the nonlinear measurement model.The unscented Kalman filter(UKF) is designed for the state space model to reduce the disturbances of the noises in the fermentation process.The proposed on-line estimation method is demonstrated by the simulation experiments of a penicillin fed-batch fermentation process.
基金supported by the National Natural Science Foundation of China(No.60971104)the Program for New Century Excellent Talents in University of China(No.NCET-05-0794)the Young Teacher Scientific Research Foundation of Southwest Jiaotong University(No.2009Q032)
文摘Non-intrusive methods for eye tracking are important for many applications of vision-based human computer interaction.However,due to the high nonlinearity of eye motion,how to ensure the robustness of external interference and accuracy of eye tracking pose the primary obstacle to the integration of eye movements into today's interfaces.In this paper,we present a strong tracking unscented Kalman filter (ST-UKF) algorithm,aiming to overcome the difficulty in nonlinear eye tracking.In the proposed ST-UKF,the Suboptimal fading factor of strong tracking filtering is introduced to improve robustness and accuracy of eye tracking.Compared with the related Kalman filter for eye tracking,the proposed ST-UKF has potential advantages in robustness and tracking accuracy.The last experimental results show the validity of our method for eye tracking under realistic conditions.
基金supported by the National Natural Science Fundationof China(61102109)
文摘To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF.
基金supported by the National Natural Science Foundation of China (61304254)the National Science Foundation for Distinguished Young Scholars of China (60925011)the Provincial and Ministerial Key Fund of China (9140A07010511BQ0105)
文摘An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.
基金Projects(2009AA093302,2002AA401003)supported by the National High-Tech Research and Development Program of ChinaProject(YYYJ-0917)supported by the Knowledge Innovation of Chinese Academy of Sciences+1 种基金Projects(61273334,61233013)supported by the National Natural Science Foundation of ChinaProject(2011010025-401)supported by the Natural Science Foundation of Liaoning Province,China
文摘Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innovation was developed.The three data-fusing approaches were analyzed and evaluated in a mathematically rigorous way.Field experiments conducted in lake further demonstrate that AUKF reduces the position error approximately by 65% compared with EKF and by 35% UKF and improves the robust performance.
基金Supported by the National Natural Science Foundation of China (20476007, 20676013).
文摘State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations.
文摘When a pico satellite is under normal operational condi- tions, whether it is extended or unscented, a conventional Kalman filter gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunc- tions in the estimation system, the Kalman filter gives inaccurate results and diverges by time. This study compares two different robust Kalman filtering algorithms, robust extended Kalman filter (REKF) and robust unscented Kalman filter (RUKF), for the case of measurement malfunctions. In both filters, by the use of de- fined variables named as the measurement noise scale factor, the faulty measurements are taken into the consideration with a small weight, and the estimations are corrected without affecting the characteristic of the accurate ones. The proposed robust Kalman filters are applied for the attitude estimation process of a pico satel- lite, and the results are compared.
基金This project was supported by the Innoviation Foundation of the Space Science and Technology Group.
文摘UKF (unscented Kalman filtering) is a new filtering method suitable to nonlinear systems. The method need not linearize nonlinear systems at the prediction stage of filtering, which is indispensable in EKF ( extended Kalman filtering) . As a result, the linearization error is avoided, and the filtering accuracy is greatly improved. UKF is applied to the attitude determination for gyroless satellite. Simulations are made to compare the new filter with the traditional EKF. The results indicate that under same conditions, compared with EKF, UKF has faster convergence speed, higher filtering accuracy and more stable estimation performance.