Carbon sequestration in unmineable coal seams has been proposed as one of the most attractive technologies to mitigate carbon dioxide(CO_(2))emissions in which CO_(2)is stored in the microporous structure of the coal ...Carbon sequestration in unmineable coal seams has been proposed as one of the most attractive technologies to mitigate carbon dioxide(CO_(2))emissions in which CO_(2)is stored in the microporous structure of the coal matrix in an adsorbed state.The CO_(2)adsorption process is hence considered one of the more efective methodologies in environmental sciences.Thus,adsorption isotherm measurements and modelling are key important scientifc measures required in understanding the adsorption system,mechanism,and process optimization in coalbeds.In this paper,three renowned and reliable adsorption isotherm models were employed including Langmuir,Freundlich,and Temkin for pure CO_(2)adsorption data,and the extended-Langmuir model for multicomponent,such as fue gas mixture-adsorption data as investigated in this research work.Also,signifcant thermodynamics properties including the standard enthalpy change(ΔH°),entropy change(ΔS°),and Gibbs free energy(ΔG°)were assessed using the van’t Hof equation.The statistical evaluation of the goodness-of-ft was done using three(3)statistical data analysis methods including correlation coefcient(R^(2)),standard deviation(σ),and standard error(SE).The Langmuir isotherm model accurately represent the pure CO_(2)adsorption on the coals than Freundlich and Temkin.The extended Langmuir gives best experimental data ft for the fue gas.The thermodynamic evaluations revealed that CO_(2)adsorption on the South African coals is feasible,spontaneous,and exothermic;and the adsorption mechanism is a combined physical and chemical interaction between the adsorbate and the adsorbent.展开更多
Deep unmineable coals are considered as economic and effective geological media for CO_(2) storage and CO_(2) enhanced coalbed methane(CO_(2)-ECBM) recovery is the key technology to realize CO_(2) geological sequestra...Deep unmineable coals are considered as economic and effective geological media for CO_(2) storage and CO_(2) enhanced coalbed methane(CO_(2)-ECBM) recovery is the key technology to realize CO_(2) geological sequestration in coals. Anthracite samples were collected from the Qinshui Basin and subjected to mercury intrusion porosimetry, low-pressure CO_(2) adsorption, and high-pressure CH_(4)/CO_(2) isothermal adsorption experiments. The average number of layers of adsorbed molecules(ANLAM) and the CH_(4)/CO_(2) absolute adsorption amounts and their ratio at experimental temperatures and pressures were calculated. Based on a comparison of the density of supercritical CO_(2) and supercritical CH_(4), it is proposed that the higher adsorption capacity of supercritical CO_(2) over supercritical CH_(4) is the result of their density differences at the same temperature. Lastly, the optimal depth for CO_(2)-ECBM in the Qinshui Basin is recommended. The results show that:(1) the adsorption capacity and the ANLAM of CO_(2) are about twice that of CH_(4) on SH-3 anthracite. The effect of pressure on the CO_(2)/CH_(4) absolute adsorption ratio decreases with the increase of pressure and tends to be consistent.(2) A parameter(the density ratio between gas free and adsorbed phase(DRFA)) is proposed to assess the absolute adsorption amount according to the supercritical CO_(2)/CH_(4) attributes. The DRFA of CO_(2) and CH_(4) both show a highly positive correlation with their absolute adsorption amounts, and therefore, the higher DRFA of CO_(2) is the significant cause of its higher adsorption capacity over CH_(4) under the same temperature and pressure.(3) CO_(2) adsorption on coal shows micropore filling with multilayer adsorption in the macro-mesopore, while methane exhibits monolayer surface coverage.(4) Based on the ideal CO_(2)/CH_(4) competitive adsorption ratio, CO_(2) storage capacity, and permeability variation with depth, it is recommended that the optimal depth for CO_(2)-ECBM in the Qinshui Basin ranges from 1000 m 展开更多
基金Acknowledgements The authors acknowledge the National Research Foundation(NRF)of South Africa for the fnancial support provided to undertake this research successfully.
文摘Carbon sequestration in unmineable coal seams has been proposed as one of the most attractive technologies to mitigate carbon dioxide(CO_(2))emissions in which CO_(2)is stored in the microporous structure of the coal matrix in an adsorbed state.The CO_(2)adsorption process is hence considered one of the more efective methodologies in environmental sciences.Thus,adsorption isotherm measurements and modelling are key important scientifc measures required in understanding the adsorption system,mechanism,and process optimization in coalbeds.In this paper,three renowned and reliable adsorption isotherm models were employed including Langmuir,Freundlich,and Temkin for pure CO_(2)adsorption data,and the extended-Langmuir model for multicomponent,such as fue gas mixture-adsorption data as investigated in this research work.Also,signifcant thermodynamics properties including the standard enthalpy change(ΔH°),entropy change(ΔS°),and Gibbs free energy(ΔG°)were assessed using the van’t Hof equation.The statistical evaluation of the goodness-of-ft was done using three(3)statistical data analysis methods including correlation coefcient(R^(2)),standard deviation(σ),and standard error(SE).The Langmuir isotherm model accurately represent the pure CO_(2)adsorption on the coals than Freundlich and Temkin.The extended Langmuir gives best experimental data ft for the fue gas.The thermodynamic evaluations revealed that CO_(2)adsorption on the South African coals is feasible,spontaneous,and exothermic;and the adsorption mechanism is a combined physical and chemical interaction between the adsorbate and the adsorbent.
基金the financial support provided by National Natural Science Foundation of China (Nos. 42102207 and 42141012)Major Project supported by Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, CUMT (2020ZDZZ01C)+1 种基金the Fundamental Research Funds for the Central Universities (2021YCPY0106)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD)。
文摘Deep unmineable coals are considered as economic and effective geological media for CO_(2) storage and CO_(2) enhanced coalbed methane(CO_(2)-ECBM) recovery is the key technology to realize CO_(2) geological sequestration in coals. Anthracite samples were collected from the Qinshui Basin and subjected to mercury intrusion porosimetry, low-pressure CO_(2) adsorption, and high-pressure CH_(4)/CO_(2) isothermal adsorption experiments. The average number of layers of adsorbed molecules(ANLAM) and the CH_(4)/CO_(2) absolute adsorption amounts and their ratio at experimental temperatures and pressures were calculated. Based on a comparison of the density of supercritical CO_(2) and supercritical CH_(4), it is proposed that the higher adsorption capacity of supercritical CO_(2) over supercritical CH_(4) is the result of their density differences at the same temperature. Lastly, the optimal depth for CO_(2)-ECBM in the Qinshui Basin is recommended. The results show that:(1) the adsorption capacity and the ANLAM of CO_(2) are about twice that of CH_(4) on SH-3 anthracite. The effect of pressure on the CO_(2)/CH_(4) absolute adsorption ratio decreases with the increase of pressure and tends to be consistent.(2) A parameter(the density ratio between gas free and adsorbed phase(DRFA)) is proposed to assess the absolute adsorption amount according to the supercritical CO_(2)/CH_(4) attributes. The DRFA of CO_(2) and CH_(4) both show a highly positive correlation with their absolute adsorption amounts, and therefore, the higher DRFA of CO_(2) is the significant cause of its higher adsorption capacity over CH_(4) under the same temperature and pressure.(3) CO_(2) adsorption on coal shows micropore filling with multilayer adsorption in the macro-mesopore, while methane exhibits monolayer surface coverage.(4) Based on the ideal CO_(2)/CH_(4) competitive adsorption ratio, CO_(2) storage capacity, and permeability variation with depth, it is recommended that the optimal depth for CO_(2)-ECBM in the Qinshui Basin ranges from 1000 m