In recent years,unmanned aerial vehicles(UAVs)for plant protection have achieved rapid development in China.In order to test and evaluate the performances of pesticides application and development status of UAVs in Ch...In recent years,unmanned aerial vehicles(UAVs)for plant protection have achieved rapid development in China.In order to test and evaluate the performances of pesticides application and development status of UAVs in China,four typical UAV models were selected to test the spraying coverage,penetrability,droplets density and the work efficiency.The results showed that the deposition and spraying liquid coverage were inconsistent both in lateral and longitudinal direction.Under the condition of the similar amount of spray volume and operation parameters,the volume median diameter(VMD)of the droplet was negatively correlated with the coverage density.The failure of the UAVs for plant protection mainly took up on the blockage of nozzle,transfusion tube and the liquid pump.The failure rate of UAVs took up 3.73%-4.36%of the total working time.The operation of UAVs during ground service took up 50%of the total working time,the preparation work took up 10%,and the route planning took up around 10%,while net operation time only took up around 30%.On the whole,the high efficiency of UAV was not fully achieved;the daily operated area was not in a satisfactory level now.The spraying performances of UAVs still need further improvement.展开更多
In order to explore the spatial pesticide spraying deposition distribution,the downwash flow field characteristics for unmanned aerial vehicle(UAV)pesticide application with accurate flight height and velocity and the...In order to explore the spatial pesticide spraying deposition distribution,the downwash flow field characteristics for unmanned aerial vehicle(UAV)pesticide application with accurate flight height and velocity and the relationship of these two aspects,a novel measurement method was proposed in this paper.A model‘3WQF80-10’single-rotor diesel UAV was tested using this method in wheat field and the effects of flight direction,flight parameters and crosswind on the distribution of spatial spraying deposition quality balance(SSDQB)and the downwash flow field distribution were researched.A cuboid aluminum sampling frame of spatial spraying deposition quality balance(SFSSDQB)with monofilament wires was made for collecting the droplets in four directions,and a set of multi-channel micro-meteorology measurement system(MMMS)was applied for measuring the downwash wind speed in three directions.Besides,BeiDou Navigation Satellite System(BNSS)was used for controlling and recording the working height,velocity and track of this model of single-rotor UAV.The results showed the distribution of the spatial spray deposition and the downwash flow field of UAV could be measured effectively at exact flight height and velocity via this method.When the average wind speed was 0.9 m/s,the average temperature was 31.5℃ and the average relative humidity was 34.1%,and the average distribution ratios of spraying deposition for model‘3WQF80-10’UAV on the upwind part,the top part,the downwind part and the bottom part were 4.4%,2.3%,50.4%and 43.7%,respectively.The flight directions of forward and backward had an impact on droplet deposition distribution and the working effect of flying backwards,with 60%of deposition ratio of the bottom part of the SFSSDQB,was better than flying forward.There was a linear negative correlation between the coefficient of variation(CV)of the bottom part and the flight height and the coefficient of determination was 0.9178,which means that the deposition distribution becomes more uniform with the increase展开更多
The effective coverage and velocity of downwash are directly related to the assemblage of spraying system and spraying effect.The downwash of the unmanned agricultural helicopter(UAH)N-3 was discussed in the paper.The...The effective coverage and velocity of downwash are directly related to the assemblage of spraying system and spraying effect.The downwash of the unmanned agricultural helicopter(UAH)N-3 was discussed in the paper.The computational fluid dynamics(CFD)methods were used to simulate and analyze the distribution of the downwash,and a wind field measurement device had been designed to test the downwash of UAH N-3.In the tests,the UAH N-3 was raised up to 5.0 m,6.0 m and 7.0 m from the ground,“annular-radial-distribution-point”method was introduced,8 directions separated by an angle of 45°(the radial direction)with the intersection point of the main rotor shaft and the ground plane as the center,0.5 m as the step length for the longitudinal(to 2.5 m)and radial(to 4.0 m)direction to set the sample points,considering the range of the rotor rotating circular area mainly.The 5 m height results of N-3 were fully discussed to describe the downwash distribution with the longitudinal altitude increased and the radial distance increased.The standard deviations of five test altitudes for eight directions were comparatively analyzed,the results showed that the total standard deviation was not greater than 0.6 m/s.The overall relative maximum margin of error calculated from the simulation and measurement data was between 0.6 and 0.7,which verified the credibility of the simulation data.High-order polynomials were used to fitting the simulation and measurement data,the fitting results showed that the polynomial coefficient of determination R^(2) met or exceeded 0.75 when the altitudes were more than 1 m,indicating the fit equation having the reference values.When the altitudes equal or less than 0.5 m,the polynomial coefficient of determination R^(2) was smaller,ranging during 0.3 to 0.7.The study would provide some foundations for the optimization of the assemblage of spraying system on the single-rotor UAH,which would promote China aviation plant protection.展开更多
Obtaining absolute pose based on pre-loaded satellite images is one of the important means of autonomous navigation for small Unmanned Aerial Vehicles(UAVs)in Global Navigation Satellite System(GNSS)denied environment...Obtaining absolute pose based on pre-loaded satellite images is one of the important means of autonomous navigation for small Unmanned Aerial Vehicles(UAVs)in Global Navigation Satellite System(GNSS)denied environments.Most of the previous works have tended to build Convolutional Neural Networks(CNNs)to extract features and then directly regress the pose,which will fail when solving the challenges caused by the huge viewpoint and size differences between“UAV-satellite”image pairs in real-world scenarios.Therefore,this paper proposes a probability distribution/regression integrated deep model with the attention-guided triple fusion mechanism,which estimates discrete distributions in pose space and three-dimensional vectors in translation space.In order to overcome the shortage of the relevant dataset,this paper simulates image datasets captured by UAVs with forward-facing cameras during target searching and autonomous attacking.The effectiveness,superiority,and robustness of the proposed method are verified by simulated datasets and flight tests.展开更多
With the development of globalization and artificial intelligence,as well as the outbreak of COVID-19,unmanned vehicles have played an important role in cargo distribution.In order to better analyze the research direc...With the development of globalization and artificial intelligence,as well as the outbreak of COVID-19,unmanned vehicles have played an important role in cargo distribution.In order to better analyze the research directions of unmanned vehicle distribution,this paper summarizes the models and algorithms of unmanned vehicle distribution optimization.The research results show that most of the studies have established the goal of optimizing the total costs or travel time.Many researchers have begun to study multi-objective optimization problems,but there are certain limitations,so some studies convert these problems into single-objective optimization for solving,such as converting time and energy consumption into cost,waiting time into distance,and time delay into penalty cost.With the development of unmanned vehicle distribution technology,in future research,a multi-objective model with the lowest cost,the shortest distance and the best security should be established and solved.Most studies have proposed heuristic algorithms for solving the unmanned vehicle distribution problem,and improved optimization solutions have been obtained.In order to ensure the diversity of solution methods,and give consideration to solution time and solution quality,hybrid methods with other algorithms will be a future research direction,for example,the combination of heuristic algorithm and exact algorithm.With the gradual deepening of research,integrated distribution of multiple types of unmanned equipment will become the focus of future research.展开更多
基金supported by the Special Fund for Agro-scientific Research in the Public Interest(201503130)the National Key Research and Development Plan(Grant No.2016YFD0200700)+1 种基金National Science Fund Projects(31470099)Beijing Science and Technology Plan Projects(No.D171100002317003).
文摘In recent years,unmanned aerial vehicles(UAVs)for plant protection have achieved rapid development in China.In order to test and evaluate the performances of pesticides application and development status of UAVs in China,four typical UAV models were selected to test the spraying coverage,penetrability,droplets density and the work efficiency.The results showed that the deposition and spraying liquid coverage were inconsistent both in lateral and longitudinal direction.Under the condition of the similar amount of spray volume and operation parameters,the volume median diameter(VMD)of the droplet was negatively correlated with the coverage density.The failure of the UAVs for plant protection mainly took up on the blockage of nozzle,transfusion tube and the liquid pump.The failure rate of UAVs took up 3.73%-4.36%of the total working time.The operation of UAVs during ground service took up 50%of the total working time,the preparation work took up 10%,and the route planning took up around 10%,while net operation time only took up around 30%.On the whole,the high efficiency of UAV was not fully achieved;the daily operated area was not in a satisfactory level now.The spraying performances of UAVs still need further improvement.
基金supported by Special Fund for Agro-scientific Research in the Public Interest(201503130)National Science Fund Projects(31470099).
文摘In order to explore the spatial pesticide spraying deposition distribution,the downwash flow field characteristics for unmanned aerial vehicle(UAV)pesticide application with accurate flight height and velocity and the relationship of these two aspects,a novel measurement method was proposed in this paper.A model‘3WQF80-10’single-rotor diesel UAV was tested using this method in wheat field and the effects of flight direction,flight parameters and crosswind on the distribution of spatial spraying deposition quality balance(SSDQB)and the downwash flow field distribution were researched.A cuboid aluminum sampling frame of spatial spraying deposition quality balance(SFSSDQB)with monofilament wires was made for collecting the droplets in four directions,and a set of multi-channel micro-meteorology measurement system(MMMS)was applied for measuring the downwash wind speed in three directions.Besides,BeiDou Navigation Satellite System(BNSS)was used for controlling and recording the working height,velocity and track of this model of single-rotor UAV.The results showed the distribution of the spatial spray deposition and the downwash flow field of UAV could be measured effectively at exact flight height and velocity via this method.When the average wind speed was 0.9 m/s,the average temperature was 31.5℃ and the average relative humidity was 34.1%,and the average distribution ratios of spraying deposition for model‘3WQF80-10’UAV on the upwind part,the top part,the downwind part and the bottom part were 4.4%,2.3%,50.4%and 43.7%,respectively.The flight directions of forward and backward had an impact on droplet deposition distribution and the working effect of flying backwards,with 60%of deposition ratio of the bottom part of the SFSSDQB,was better than flying forward.There was a linear negative correlation between the coefficient of variation(CV)of the bottom part and the flight height and the coefficient of determination was 0.9178,which means that the deposition distribution becomes more uniform with the increase
基金gratefully acknowledge the National Natural Science Foundation of China(No.31701327)the National Key Research and Development Program of China(No.2017YFD0701000)+1 种基金the Natural Science Foundation of Jiangsu Province,China(BK 20151074)part of the National Key Research and Development Plan:High Efficient Ground and Aerial Spraying Technology and Intelligent Equipment(Grant No.2016YFD0200700).
文摘The effective coverage and velocity of downwash are directly related to the assemblage of spraying system and spraying effect.The downwash of the unmanned agricultural helicopter(UAH)N-3 was discussed in the paper.The computational fluid dynamics(CFD)methods were used to simulate and analyze the distribution of the downwash,and a wind field measurement device had been designed to test the downwash of UAH N-3.In the tests,the UAH N-3 was raised up to 5.0 m,6.0 m and 7.0 m from the ground,“annular-radial-distribution-point”method was introduced,8 directions separated by an angle of 45°(the radial direction)with the intersection point of the main rotor shaft and the ground plane as the center,0.5 m as the step length for the longitudinal(to 2.5 m)and radial(to 4.0 m)direction to set the sample points,considering the range of the rotor rotating circular area mainly.The 5 m height results of N-3 were fully discussed to describe the downwash distribution with the longitudinal altitude increased and the radial distance increased.The standard deviations of five test altitudes for eight directions were comparatively analyzed,the results showed that the total standard deviation was not greater than 0.6 m/s.The overall relative maximum margin of error calculated from the simulation and measurement data was between 0.6 and 0.7,which verified the credibility of the simulation data.High-order polynomials were used to fitting the simulation and measurement data,the fitting results showed that the polynomial coefficient of determination R^(2) met or exceeded 0.75 when the altitudes were more than 1 m,indicating the fit equation having the reference values.When the altitudes equal or less than 0.5 m,the polynomial coefficient of determination R^(2) was smaller,ranging during 0.3 to 0.7.The study would provide some foundations for the optimization of the assemblage of spraying system on the single-rotor UAH,which would promote China aviation plant protection.
基金supported by the National Natural Science Foundation of China(No.61973033)the Chongqing Natural Science Foundation,China(No.cstc2021jcyjmsxmX0737).
文摘Obtaining absolute pose based on pre-loaded satellite images is one of the important means of autonomous navigation for small Unmanned Aerial Vehicles(UAVs)in Global Navigation Satellite System(GNSS)denied environments.Most of the previous works have tended to build Convolutional Neural Networks(CNNs)to extract features and then directly regress the pose,which will fail when solving the challenges caused by the huge viewpoint and size differences between“UAV-satellite”image pairs in real-world scenarios.Therefore,this paper proposes a probability distribution/regression integrated deep model with the attention-guided triple fusion mechanism,which estimates discrete distributions in pose space and three-dimensional vectors in translation space.In order to overcome the shortage of the relevant dataset,this paper simulates image datasets captured by UAVs with forward-facing cameras during target searching and autonomous attacking.The effectiveness,superiority,and robustness of the proposed method are verified by simulated datasets and flight tests.
基金supported by the National Key Research and Development Program of China under Grant 2021YFE0203600the National Natural Science Foundation of China(72274024)。
文摘With the development of globalization and artificial intelligence,as well as the outbreak of COVID-19,unmanned vehicles have played an important role in cargo distribution.In order to better analyze the research directions of unmanned vehicle distribution,this paper summarizes the models and algorithms of unmanned vehicle distribution optimization.The research results show that most of the studies have established the goal of optimizing the total costs or travel time.Many researchers have begun to study multi-objective optimization problems,but there are certain limitations,so some studies convert these problems into single-objective optimization for solving,such as converting time and energy consumption into cost,waiting time into distance,and time delay into penalty cost.With the development of unmanned vehicle distribution technology,in future research,a multi-objective model with the lowest cost,the shortest distance and the best security should be established and solved.Most studies have proposed heuristic algorithms for solving the unmanned vehicle distribution problem,and improved optimization solutions have been obtained.In order to ensure the diversity of solution methods,and give consideration to solution time and solution quality,hybrid methods with other algorithms will be a future research direction,for example,the combination of heuristic algorithm and exact algorithm.With the gradual deepening of research,integrated distribution of multiple types of unmanned equipment will become the focus of future research.