Physical processes involving baryons could leave a non-negligible imprint on the distribution of cosmic matter.A series of simulated data sets at high resolution with identical initial conditions are employed for coun...Physical processes involving baryons could leave a non-negligible imprint on the distribution of cosmic matter.A series of simulated data sets at high resolution with identical initial conditions are employed for count-in-cell analysis,including one N-body pure dark matter run,one with only adiabatic gas and one with dissipative processes.Variances and higher order cumulants Sn of dark matter and gas are estimated.It is found that physical processes with baryons mainly affect distributions of dark matter at scales less than 1 h-1 Mpc.In comparison with the pure dark matter run,adiabatic processes alone strengthen the variance of dark matter by~10%at a scale of 0.1 h-1 Mpc,while the Sn parameters of dark matter only mildly deviate by a few percent.The dissipative gas run does not differ much from the adiabatic run in terms of variance for dark matter,but renders significantly different Sn parameters describing the dark matter,bringing about a more than 10%enhancement to S3 at 0.1 h-1 Mpc and z=0 and being even larger at a higher redshift.Distribution patterns of gas in two hydrodynamical simulations are quite different.Variance of gas at z=0 decreases by~30%in the adiabatic simulation but by~60%in the nonadiabatic simulation at 0.1 h-1 Mpc.The attenuation is weaker at larger scales but is still obvious at~10 h-1 Mpc.Sn parameters of gas are biased upward at scales 〈~4 h-1 Mpc,and dissipative processes show an~84%promotion at z=0 to S3 at 0.1 h-1 Mpc in contrast with the~7%change in the adiabatic run.The segregation in clustering between gas and dark matter could have dramatic implications on modeling distributions of galaxies and relevant cosmological applications demanding fine details of matter distribution in a strongly nonlinear regime.展开更多
We explore features of redshift distortion in Fourier analysis of N-body simulations. The phases of the Fourier modes of dark matter density fluctuation are generally shifted by the peculiar motion along the line of s...We explore features of redshift distortion in Fourier analysis of N-body simulations. The phases of the Fourier modes of dark matter density fluctuation are generally shifted by the peculiar motion along the line of sight, the induced phase shift is stochastic and has a probability distribution function (PDF) that is symmetric about the peak at zero shift and whose exact shape depends on the wave vector, except on very large scales where phases are invariant by linear perturbation theory. Analysis of the phase shifts motivates our phenomenological models for the bispectrum in redshift space. Comparison with simulations shows that our toy models are very successful in modeling bispectrum of equilateral and isosceles trian- gles at large scales. In the second part we compare the monopole of the power spectrum and bispectrum in the radial and plane-parallel distortion to test the plane-parallel approximation. We confirm the results of Scoccimarro that difference of power spectrum is at the level of 10%, and, in the reduced bispectrum, the difference is as small as a few percent. However, on the plane perpendicular to the line of sight of kz = 0, the difference in power spectrum be- tween the radial and plane-parallel approximation can be more than - 10%, and even worse on very small scales. Such difference is prominent for bispectrum, especially for configura- tions of tilted triangles. Non-Ganssian signals under the radial distortion on small scales are systematically biased downside than are in the plane-parallel approximation, with amplitudes depending on the opening angle of the sample point to the observer. This observation gives warning to the practice of using the power spectrum and bispectrum measured on the kz = 0 plane as estimates of the real space statistics.展开更多
Massive neutrinos are expected to affect the large-scale structure formation,including the major component of solid substances,dark matter halos.How halos are influenced by neutrinos is vital and interesting,and angul...Massive neutrinos are expected to affect the large-scale structure formation,including the major component of solid substances,dark matter halos.How halos are influenced by neutrinos is vital and interesting,and angular momentum(AM)as a significant feature provides a statistical perspective for this issue.Exploring halos from TianNu N-body cosmological simulation with the co-evolving neutrino particles,we obtain some concrete conclusions.First,by comparing the same halos with and without neutrinos,in contrast to the neutrino-free case,over 89.71%of halos have smaller halo moduli,over 71.06%have smaller particle-mass-reduced(PMR)AM moduli,and over 95.44%change their orientations of less than 0°.65.Moreover,the relative variation of PMR modulus is more visible for low-mass halos.Second,to explore the PMR moduli of halos in dense or sparse areas,we divide the whole box into big cubes,and search for halos within a small spherical cell in a single cube.From the two-level divisions,we discover that in denser cubes,the variation of PMR moduli with massive neutrinos decreases more significantly.This distinction suggests that neutrinos exert heavier influence on halos'moduli in compact regions.With massive neutrinos,most halos(86.60%)have lower masses than without neutrinos.展开更多
Constraining neutrino mass remains an elusive challenge in modern physics.Precision measurements are expected from several upcoming cosmological probes of large-scale structure.Achieving this goal relies on an equal l...Constraining neutrino mass remains an elusive challenge in modern physics.Precision measurements are expected from several upcoming cosmological probes of large-scale structure.Achieving this goal relies on an equal level of precision from theoretical predictions of neutrino clustering.Numerical simulations of the non-linear evolution of cold dark matter and neutrinos play a pivotal role in this process.We incorporate neutrinos into the cosmological N-body code CUBEP3M and discuss the challenges associated with pushing to the extreme scales demanded by the neutrino problem.We highlight code optimizations made to exploit modern high performance computing architectures and present a novel method of data compression that reduces the phase-space particle footprint from 24 bytes in single precision to roughly 9 bytes.We scale the neutrino problem to the Tianhe-2 supercomputer and provide details of our production run,named Tian Nu,which uses 86%of the machine(13 824 compute nodes).With a total of 2.97 trillion particles,Tian Nu is currently the world’s largest cosmological N-body simulation and improves upon previous neutrino simulations by two orders of magnitude in scale.We finish with a discussion of the unanticipated computational challenges that were encountered during the Tian Nu runtime.展开更多
The power spectrum estimator based on the Discrete Wavelet Transfor- mation (DWT) is applied to detect the clustering power in the IRAS Point Source Catalog Redshift Survey (PSCz). Comparison with mock samples extract...The power spectrum estimator based on the Discrete Wavelet Transfor- mation (DWT) is applied to detect the clustering power in the IRAS Point Source Catalog Redshift Survey (PSCz). Comparison with mock samples extracted from N-body simulation shows that the DWT power spectrum estimator could provide a robust measurement of banded fluctuation power over a range of wavenumbers 0.1 ~ 2.0hMpc-1. We have fitted three typical CDM models (SCDM, τCDM and CDM) using the Peacock-Dodds formula including non-linear evolution and redshift distortion. We find that, our results are in good agreement with other statistical measurements of the PSCz.展开更多
An aliasing effect brought up by mass assignment onto Fast Fourier Transformation (FFT) grids may bias measurement of the power spectrum of large scale structures. In this paper, based on the Beylkin's unequally sp...An aliasing effect brought up by mass assignment onto Fast Fourier Transformation (FFT) grids may bias measurement of the power spectrum of large scale structures. In this paper, based on the Beylkin's unequally spaced FFT technique, we propose a new precise method to extract the true power spectrum of a large discrete data set. We compare the traditional mass assignment schemes with the new method using the Daub6 and the 3rd-order B-spline scaling functions. Our measurement of Poisson samples and samples of N-body simulations shows that the B-spline scaling function is an optimal choice for mass assignment in the sense that (1) it has a compact support in real space and thus yields an efficient algorithm (2) without any extra corrections. The Fourier space behavior of the 3rd-order B-spline scaling function enables it to be able to accurately recover the true power spectrum with errors less than 5% up to k 〈 kN. It is expected that such a method can be applied to higher order statistics in Fourier space and will enable us to have a precision capture of the non-Gaussian features in the large scale structure of the universe.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.10873035 and 11133003)JP acknowledges the One-Hundred-Talent fellowship of CASthe Shanghai Supercomputer Center with support from the National High Technology Research and Development Program of China(863 project,No.2006AA01A125)
文摘Physical processes involving baryons could leave a non-negligible imprint on the distribution of cosmic matter.A series of simulated data sets at high resolution with identical initial conditions are employed for count-in-cell analysis,including one N-body pure dark matter run,one with only adiabatic gas and one with dissipative processes.Variances and higher order cumulants Sn of dark matter and gas are estimated.It is found that physical processes with baryons mainly affect distributions of dark matter at scales less than 1 h-1 Mpc.In comparison with the pure dark matter run,adiabatic processes alone strengthen the variance of dark matter by~10%at a scale of 0.1 h-1 Mpc,while the Sn parameters of dark matter only mildly deviate by a few percent.The dissipative gas run does not differ much from the adiabatic run in terms of variance for dark matter,but renders significantly different Sn parameters describing the dark matter,bringing about a more than 10%enhancement to S3 at 0.1 h-1 Mpc and z=0 and being even larger at a higher redshift.Distribution patterns of gas in two hydrodynamical simulations are quite different.Variance of gas at z=0 decreases by~30%in the adiabatic simulation but by~60%in the nonadiabatic simulation at 0.1 h-1 Mpc.The attenuation is weaker at larger scales but is still obvious at~10 h-1 Mpc.Sn parameters of gas are biased upward at scales 〈~4 h-1 Mpc,and dissipative processes show an~84%promotion at z=0 to S3 at 0.1 h-1 Mpc in contrast with the~7%change in the adiabatic run.The segregation in clustering between gas and dark matter could have dramatic implications on modeling distributions of galaxies and relevant cosmological applications demanding fine details of matter distribution in a strongly nonlinear regime.
基金Supported by the National Natural Science Foundation of China.
文摘We explore features of redshift distortion in Fourier analysis of N-body simulations. The phases of the Fourier modes of dark matter density fluctuation are generally shifted by the peculiar motion along the line of sight, the induced phase shift is stochastic and has a probability distribution function (PDF) that is symmetric about the peak at zero shift and whose exact shape depends on the wave vector, except on very large scales where phases are invariant by linear perturbation theory. Analysis of the phase shifts motivates our phenomenological models for the bispectrum in redshift space. Comparison with simulations shows that our toy models are very successful in modeling bispectrum of equilateral and isosceles trian- gles at large scales. In the second part we compare the monopole of the power spectrum and bispectrum in the radial and plane-parallel distortion to test the plane-parallel approximation. We confirm the results of Scoccimarro that difference of power spectrum is at the level of 10%, and, in the reduced bispectrum, the difference is as small as a few percent. However, on the plane perpendicular to the line of sight of kz = 0, the difference in power spectrum be- tween the radial and plane-parallel approximation can be more than - 10%, and even worse on very small scales. Such difference is prominent for bispectrum, especially for configura- tions of tilted triangles. Non-Ganssian signals under the radial distortion on small scales are systematically biased downside than are in the plane-parallel approximation, with amplitudes depending on the opening angle of the sample point to the observer. This observation gives warning to the practice of using the power spectrum and bispectrum measured on the kz = 0 plane as estimates of the real space statistics.
基金supported by the National Natural Science Foundation of China(grant Nos.11929301 and 61802428)。
文摘Massive neutrinos are expected to affect the large-scale structure formation,including the major component of solid substances,dark matter halos.How halos are influenced by neutrinos is vital and interesting,and angular momentum(AM)as a significant feature provides a statistical perspective for this issue.Exploring halos from TianNu N-body cosmological simulation with the co-evolving neutrino particles,we obtain some concrete conclusions.First,by comparing the same halos with and without neutrinos,in contrast to the neutrino-free case,over 89.71%of halos have smaller halo moduli,over 71.06%have smaller particle-mass-reduced(PMR)AM moduli,and over 95.44%change their orientations of less than 0°.65.Moreover,the relative variation of PMR modulus is more visible for low-mass halos.Second,to explore the PMR moduli of halos in dense or sparse areas,we divide the whole box into big cubes,and search for halos within a small spherical cell in a single cube.From the two-level divisions,we discover that in denser cubes,the variation of PMR moduli with massive neutrinos decreases more significantly.This distinction suggests that neutrinos exert heavier influence on halos'moduli in compact regions.With massive neutrinos,most halos(86.60%)have lower masses than without neutrinos.
基金the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase)supported under the U.S.Department of Energy contract DE-AC02-06CH11357+12 种基金General Financial Grant No.2015M570884Special Financial Grant No.2016T90009 from the China Postdoctoral Science Foundationsupport from the European Commission under a Marie-Sklodwoska-Curie European Fellowship(EU project 656869)support from Mo ST 863 program 2012AA121701NSFC grant 11373030CAS grant QYZDJ-SSW-SLH017supported by the National Natural Science Foundation of China(Grant Nos.11573006,11528306,10473002 and 11135009)the National Basic Research Program of China(973 program)under grant No.2012CB821804the Fundamental Research Funds for the Central UniversitiesSciNet is funded by:the Canada Foundation for Innovation under the auspices of Compute Canadathe Government of Ontariothe Ontario Research Fund Research Excellencethe University of Toronto
文摘Constraining neutrino mass remains an elusive challenge in modern physics.Precision measurements are expected from several upcoming cosmological probes of large-scale structure.Achieving this goal relies on an equal level of precision from theoretical predictions of neutrino clustering.Numerical simulations of the non-linear evolution of cold dark matter and neutrinos play a pivotal role in this process.We incorporate neutrinos into the cosmological N-body code CUBEP3M and discuss the challenges associated with pushing to the extreme scales demanded by the neutrino problem.We highlight code optimizations made to exploit modern high performance computing architectures and present a novel method of data compression that reduces the phase-space particle footprint from 24 bytes in single precision to roughly 9 bytes.We scale the neutrino problem to the Tianhe-2 supercomputer and provide details of our production run,named Tian Nu,which uses 86%of the machine(13 824 compute nodes).With a total of 2.97 trillion particles,Tian Nu is currently the world’s largest cosmological N-body simulation and improves upon previous neutrino simulations by two orders of magnitude in scale.We finish with a discussion of the unanticipated computational challenges that were encountered during the Tian Nu runtime.
基金Supported by the National Natur al Science Foun dation of China.
文摘The power spectrum estimator based on the Discrete Wavelet Transfor- mation (DWT) is applied to detect the clustering power in the IRAS Point Source Catalog Redshift Survey (PSCz). Comparison with mock samples extracted from N-body simulation shows that the DWT power spectrum estimator could provide a robust measurement of banded fluctuation power over a range of wavenumbers 0.1 ~ 2.0hMpc-1. We have fitted three typical CDM models (SCDM, τCDM and CDM) using the Peacock-Dodds formula including non-linear evolution and redshift distortion. We find that, our results are in good agreement with other statistical measurements of the PSCz.
基金Supported by the National Natural Science Foundation of ChinaThis work is supported by the National Science Foundation of China through grants 10373012, 10633049, 10643002 the 973 program under No. 2007CB815402.
文摘An aliasing effect brought up by mass assignment onto Fast Fourier Transformation (FFT) grids may bias measurement of the power spectrum of large scale structures. In this paper, based on the Beylkin's unequally spaced FFT technique, we propose a new precise method to extract the true power spectrum of a large discrete data set. We compare the traditional mass assignment schemes with the new method using the Daub6 and the 3rd-order B-spline scaling functions. Our measurement of Poisson samples and samples of N-body simulations shows that the B-spline scaling function is an optimal choice for mass assignment in the sense that (1) it has a compact support in real space and thus yields an efficient algorithm (2) without any extra corrections. The Fourier space behavior of the 3rd-order B-spline scaling function enables it to be able to accurately recover the true power spectrum with errors less than 5% up to k 〈 kN. It is expected that such a method can be applied to higher order statistics in Fourier space and will enable us to have a precision capture of the non-Gaussian features in the large scale structure of the universe.