Recently,Cooperative Spectrum Sensing(CSS)for Cognitive Radio Networks(CRN)plays a significant role in efficient 5G wireless communication.Spectrum sensing is a significant technology in CRN to identify underutilized ...Recently,Cooperative Spectrum Sensing(CSS)for Cognitive Radio Networks(CRN)plays a significant role in efficient 5G wireless communication.Spectrum sensing is a significant technology in CRN to identify underutilized spectrums.The CSS technique is highly applicable due to its fast and efficient performance.5G wireless communication is widely employed for the continuous development of efficient and accurate Internet of Things(IoT)networks.5G wireless communication will potentially lead the way for next generation IoT communication.CSS has established significant consideration as a feasible resource to improve identification performance by developing spatial diversity in receiving signal strength in IoT.In this paper,an optimal CSS for CRN is performed using Offset Quadrature Amplitude Modulation Universal Filtered Multi-Carrier Non-Orthogonal Multiple Access(OQAM/UFMC/NOMA)methodologies.Availability of spectrum and bandwidth utilization is a key challenge in CRN for IoT 5G wireless communication.The optimal solution for CRN in IoT-based 5G communication should be able to provide optimal bandwidth and CSS,low latency,Signal Noise Ratio(SNR)improvement,maximum capacity,offset synchronization,and Peak Average Power Ratio(PAPR)reduction.The Energy Efficient All-Pass Filter(EEAPF)algorithm is used to eliminate PAPR.The deployment approach improves Quality of Service(QoS)in terms of system reliability,throughput,and energy efficiency.Our in-depth experimental results show that the proposed methodology provides an optimal solution when directly compares against current existing methodologies.展开更多
Fifth Generation(5G)systems aim to improve flexibility,coexistence and diverse service in several aspects to achieve the emerging applications requirements.Windowing and filtering of the traditional multicarrier wavef...Fifth Generation(5G)systems aim to improve flexibility,coexistence and diverse service in several aspects to achieve the emerging applications requirements.Windowing and filtering of the traditional multicarrier waveforms are now considered common sense when designing more flexible waveforms.This paper proposed a Universal Windowing Multi-Carrier(UWMC)waveform design platform that is flexible,providing more easily coexists with different pulse shapes,and reduces the Out of Band Emissions(OOBE),which is generated by the traditional multicarrier methods that used in the previous generations of the mobile technology.The novel proposed approach is different from other approaches that have been proposed,and it is based on applying a novel modulation approach for the Quadrature-Amplitude Modulation(64-QAM)which is considered very popular in mobile technology.This new approach is done by employing flexible pulse shaping windowing,by assigning windows to various bands.This leads to decreased side-lobes,which are going to reduce OOBE and boost the spectral efficiency by assigning them to edge subscribers only.The new subband windowing(UWMC)will also maintain comprehensively the non-orthogonality by a variety of windowing and make sure to keep window time the same for all subbands.In addition,this paper shows that the new approach made the Bit Error Rate(BER)equal to the conventional Windowed-Orthogonal Frequency Division Multiplexing(W-OFDM).This platform achieved great improvement for some other Key Performance Indicators(KPI),such as the Peak to Average Power Ratio(PAPR)compared with the conventional(W-OFDM)and the conventional Universal Filtered Multicarrier(UFMC)approaches.In particular,the proposed windowing scheme outperforms previous designs in terms of the Power Spectral Density(PSD)by 58%and the(BER)by 1.5 dB and reduces the Complementary Cumulative Distribution Function Cubic Metric(CCDF-CM)by 24%.展开更多
A new interlayer is successfully used to be a universal carrier switch, developing high-performance hybrid white organic light-emitting diodes (WOLEDs). By dint of this interlayer, the two-color hybrid WOLED shows a...A new interlayer is successfully used to be a universal carrier switch, developing high-performance hybrid white organic light-emitting diodes (WOLEDs). By dint of this interlayer, the two-color hybrid WOLED shows a maximum total current efficiency (CE) and power efficiency (PE) of 48.1 cd/A and 37.6 Im/W, respectively, while the three-color hybrid WOLED shows a maximum total CE and PE of 33.8 cd/A and 25.7Im/W, respectively. The color rendering index of the three-color hybrid WOLEDs are ≥ 75, which is already a sufficient level for many commercial lighting applications. In addition, both the two-color and three-color hybrid WOLEDs show low efficiency roll-off and stable color. Furthermore, devices with the new interlayer show much higher performance than devices with the most commonly used 4,4-N,N-dicarbazolebiphenyl and N,N'-di(naphthalene-l-yl)-N,N'- diphenyl-benzidine interlayers.展开更多
空中接口标准在移动通信网络中是最关键部分,而空中接口中最核心的是多址与复用技术。首先给出了第5代移动通信系统(5G)对空中接口技术的新要求,然后对OFDM(orthogonal frequency division multiplexing)存在的问题进行了分析,在此基础...空中接口标准在移动通信网络中是最关键部分,而空中接口中最核心的是多址与复用技术。首先给出了第5代移动通信系统(5G)对空中接口技术的新要求,然后对OFDM(orthogonal frequency division multiplexing)存在的问题进行了分析,在此基础上,重点讨论了滤波器组多载波传输(filterbank based multi carrier,FBMC),通用滤波多载波(universal filtered multi carrier,UFMC)和广义频分复用传输(generalized frequency division multiplexing,GFDM)等3种基于OFDM改进的新型多址与复用技术。展开更多
An interference suppression design scheme based on conjugate weighted butterfly interleaving mapping(CWBIM)is proposed for inter-carrier interference(ICI)and inter-subband interference(IBI)in the received signals of u...An interference suppression design scheme based on conjugate weighted butterfly interleaving mapping(CWBIM)is proposed for inter-carrier interference(ICI)and inter-subband interference(IBI)in the received signals of universal filtered multi-carrier(UFMC)systems.It applies an interleaving mapping operation to subtract the interference coefficients of adjacent terms in ICI and IBI twice,thereby achieving suppression effects similar to the self-cancellation(SC)algorithm while maintaining the original data transmission efficiency.Meanwhile,conjugate and complex weighting operations can effectively suppress the impact of phase rotation errors in high-speed mobile channel environments,thereby further improving the bit error rate(BFR)performance of the system,Moreover,butterfly operation can effectively control the computational complexity of the interleaving mapping process.Theoretical analysis and simulation results show that,compared with the PSC-UFMC algorithm,the CWBIM-UFMC scheme proposed in this paper can effectively suppress ICI and IBI in the received signal without compromising data transmission efficiency and reducing computational complexity,thereby achieving good BER performance of the system.展开更多
文摘Recently,Cooperative Spectrum Sensing(CSS)for Cognitive Radio Networks(CRN)plays a significant role in efficient 5G wireless communication.Spectrum sensing is a significant technology in CRN to identify underutilized spectrums.The CSS technique is highly applicable due to its fast and efficient performance.5G wireless communication is widely employed for the continuous development of efficient and accurate Internet of Things(IoT)networks.5G wireless communication will potentially lead the way for next generation IoT communication.CSS has established significant consideration as a feasible resource to improve identification performance by developing spatial diversity in receiving signal strength in IoT.In this paper,an optimal CSS for CRN is performed using Offset Quadrature Amplitude Modulation Universal Filtered Multi-Carrier Non-Orthogonal Multiple Access(OQAM/UFMC/NOMA)methodologies.Availability of spectrum and bandwidth utilization is a key challenge in CRN for IoT 5G wireless communication.The optimal solution for CRN in IoT-based 5G communication should be able to provide optimal bandwidth and CSS,low latency,Signal Noise Ratio(SNR)improvement,maximum capacity,offset synchronization,and Peak Average Power Ratio(PAPR)reduction.The Energy Efficient All-Pass Filter(EEAPF)algorithm is used to eliminate PAPR.The deployment approach improves Quality of Service(QoS)in terms of system reliability,throughput,and energy efficiency.Our in-depth experimental results show that the proposed methodology provides an optimal solution when directly compares against current existing methodologies.
基金supported in part by the Ministry of Higher Education Malaysia through the Fundamental Research Grant Scheme(FRGS/1/2019/TK04/UTHM/02/8)the University Tun Hussein Onn Malaysia.
文摘Fifth Generation(5G)systems aim to improve flexibility,coexistence and diverse service in several aspects to achieve the emerging applications requirements.Windowing and filtering of the traditional multicarrier waveforms are now considered common sense when designing more flexible waveforms.This paper proposed a Universal Windowing Multi-Carrier(UWMC)waveform design platform that is flexible,providing more easily coexists with different pulse shapes,and reduces the Out of Band Emissions(OOBE),which is generated by the traditional multicarrier methods that used in the previous generations of the mobile technology.The novel proposed approach is different from other approaches that have been proposed,and it is based on applying a novel modulation approach for the Quadrature-Amplitude Modulation(64-QAM)which is considered very popular in mobile technology.This new approach is done by employing flexible pulse shaping windowing,by assigning windows to various bands.This leads to decreased side-lobes,which are going to reduce OOBE and boost the spectral efficiency by assigning them to edge subscribers only.The new subband windowing(UWMC)will also maintain comprehensively the non-orthogonality by a variety of windowing and make sure to keep window time the same for all subbands.In addition,this paper shows that the new approach made the Bit Error Rate(BER)equal to the conventional Windowed-Orthogonal Frequency Division Multiplexing(W-OFDM).This platform achieved great improvement for some other Key Performance Indicators(KPI),such as the Peak to Average Power Ratio(PAPR)compared with the conventional(W-OFDM)and the conventional Universal Filtered Multicarrier(UFMC)approaches.In particular,the proposed windowing scheme outperforms previous designs in terms of the Power Spectral Density(PSD)by 58%and the(BER)by 1.5 dB and reduces the Complementary Cumulative Distribution Function Cubic Metric(CCDF-CM)by 24%.
基金Supported by the National Natural Science Foundation of China under Grant No 61076066the Innovation Project of Science and Technology Plan Projects of Shaanxi Province under Grant No 2011KTCQ01-09
文摘A new interlayer is successfully used to be a universal carrier switch, developing high-performance hybrid white organic light-emitting diodes (WOLEDs). By dint of this interlayer, the two-color hybrid WOLED shows a maximum total current efficiency (CE) and power efficiency (PE) of 48.1 cd/A and 37.6 Im/W, respectively, while the three-color hybrid WOLED shows a maximum total CE and PE of 33.8 cd/A and 25.7Im/W, respectively. The color rendering index of the three-color hybrid WOLEDs are ≥ 75, which is already a sufficient level for many commercial lighting applications. In addition, both the two-color and three-color hybrid WOLEDs show low efficiency roll-off and stable color. Furthermore, devices with the new interlayer show much higher performance than devices with the most commonly used 4,4-N,N-dicarbazolebiphenyl and N,N'-di(naphthalene-l-yl)-N,N'- diphenyl-benzidine interlayers.
文摘空中接口标准在移动通信网络中是最关键部分,而空中接口中最核心的是多址与复用技术。首先给出了第5代移动通信系统(5G)对空中接口技术的新要求,然后对OFDM(orthogonal frequency division multiplexing)存在的问题进行了分析,在此基础上,重点讨论了滤波器组多载波传输(filterbank based multi carrier,FBMC),通用滤波多载波(universal filtered multi carrier,UFMC)和广义频分复用传输(generalized frequency division multiplexing,GFDM)等3种基于OFDM改进的新型多址与复用技术。
基金Supported by the National Natural Science Foundation of China(No.61601296,61701295)the Science and Technology Innovation ActionPlan Project of Shanghai Science and Technology Commission(No.20511103500)the Talent Program of Shanghai University of Engineer-ing Science(No.2018RC43)。
文摘An interference suppression design scheme based on conjugate weighted butterfly interleaving mapping(CWBIM)is proposed for inter-carrier interference(ICI)and inter-subband interference(IBI)in the received signals of universal filtered multi-carrier(UFMC)systems.It applies an interleaving mapping operation to subtract the interference coefficients of adjacent terms in ICI and IBI twice,thereby achieving suppression effects similar to the self-cancellation(SC)algorithm while maintaining the original data transmission efficiency.Meanwhile,conjugate and complex weighting operations can effectively suppress the impact of phase rotation errors in high-speed mobile channel environments,thereby further improving the bit error rate(BFR)performance of the system,Moreover,butterfly operation can effectively control the computational complexity of the interleaving mapping process.Theoretical analysis and simulation results show that,compared with the PSC-UFMC algorithm,the CWBIM-UFMC scheme proposed in this paper can effectively suppress ICI and IBI in the received signal without compromising data transmission efficiency and reducing computational complexity,thereby achieving good BER performance of the system.
文摘为了适应未来无线通信系统中的设备多样性、高速率、低时延和低功率消耗的需要,新型波形研究成为第5代无线通信系统的关键技术之一。通用滤波多载波(Universal?filtered multicarrier,UFMC)是一种广泛研究的5G侯选波形。然而现有的UFMC研究只涉及UFMC?SISO的场景,UFMC?MIMO的可行性和性能分析仍然空缺,而MIMO波束成形必然是5G通信系统的重要场景,因此对UFMC?MIMO进行评估和研究具有重要价值。本文提出了一个UFMC?MIMO系统可行方案,包括发射机、接收机和波束成形实现算法。通过数学推导证明该方案能正确恢复发送端数据并通过仿真验证其性能。仿真结果表明,不论在加性高斯白噪声(Additive white Gaussian noise,AWGN)信道还是在多径信道下,UFMC?MIMO都具有比OFDM?MIMO更优越的性能,尤其在抗频偏鲁棒性上表现出很大的优越性,进而验证了UFMC?MIMO传输方案具备应用5G通信的能力。