A novel fully differential telescopic operational transconductance amplifier (OTA) is proposed. An additional PMOS differential pair is introduced to improve the unit-gain bandwidth of the telescopic amplifier. At t...A novel fully differential telescopic operational transconductance amplifier (OTA) is proposed. An additional PMOS differential pair is introduced to improve the unit-gain bandwidth of the telescopic amplifier. At the same time, the slew rate is enhanced by the auxiliary slew rate boost circuits. The proposed OTA is designed in a 0.18 μm CMOS process. Simulation results show that there is a 49% improvement in the unit-gain bandwidth compared to that of a conventional OTA; moreover, the DC gain and the slew rate are also enhanced.展开更多
This paper presents a controllable resistor, which is formed by a MOS-resistor working in the deep triangle region and an auxiliary circuit. The auxiliary circuit can generate the gate-source voltage which is proporti...This paper presents a controllable resistor, which is formed by a MOS-resistor working in the deep triangle region and an auxiliary circuit. The auxiliary circuit can generate the gate-source voltage which is proportional to the output current of an low dropout regulator for the MOS-resistor. Thus, the equivalent output resistance of the MOS-resistor is inversely proportional to the output current, which is a suitable feature for pole-zero tracking frequency compensation methods. By switching the type of the MOS-resistor and current direction through the auxiliary circuit, the controllable resistor can be suitable for different applications. Three pole-zero tracking frequency compensation methods based on a single Miller capacitor with hulling resistor, unit-gain compensation cell and pseudo-ESR (equivalent serial resistor of load capacitor) power stage have been realized by this controllable resistor. Their advantages and limitations are discussed and verified by simulation results.展开更多
基金supported by the National HighTechnology Research and Development Program of China(No.2007AA12Z332)
文摘A novel fully differential telescopic operational transconductance amplifier (OTA) is proposed. An additional PMOS differential pair is introduced to improve the unit-gain bandwidth of the telescopic amplifier. At the same time, the slew rate is enhanced by the auxiliary slew rate boost circuits. The proposed OTA is designed in a 0.18 μm CMOS process. Simulation results show that there is a 49% improvement in the unit-gain bandwidth compared to that of a conventional OTA; moreover, the DC gain and the slew rate are also enhanced.
基金Project supported by the Key Science and Technology Project of Zhejiang Province,China (No.2007C21021)
文摘This paper presents a controllable resistor, which is formed by a MOS-resistor working in the deep triangle region and an auxiliary circuit. The auxiliary circuit can generate the gate-source voltage which is proportional to the output current of an low dropout regulator for the MOS-resistor. Thus, the equivalent output resistance of the MOS-resistor is inversely proportional to the output current, which is a suitable feature for pole-zero tracking frequency compensation methods. By switching the type of the MOS-resistor and current direction through the auxiliary circuit, the controllable resistor can be suitable for different applications. Three pole-zero tracking frequency compensation methods based on a single Miller capacitor with hulling resistor, unit-gain compensation cell and pseudo-ESR (equivalent serial resistor of load capacitor) power stage have been realized by this controllable resistor. Their advantages and limitations are discussed and verified by simulation results.