Logical behavioral arrangements are a class of conventional arrangements to illustrate the happening of incidents in an appropriate and structured approach in vehicular ad hoc network (VANET). These incidents are ch...Logical behavioral arrangements are a class of conventional arrangements to illustrate the happening of incidents in an appropriate and structured approach in vehicular ad hoc network (VANET). These incidents are characterized as a list of path segments that are passed through by the vehicles for the duration of their journeys from a pre-decided local source to a local destination in a structured manner. A set of proper description illustrating the paths traversed by the vehicles as logical behavioral arrangements is describedin this paper. The data gathering scheme based on secure authentication to gather the data from the vehicles is proposed in this paper. This proposed data gathering scheme based on secure authentication is compared with the existing data gathering schemes by using veins framework and the results of analysis reflect that the proposed scheme outperforms among others. The data collected from the vehicles by the proposed data gathering scheme is stored at distributed road side units (RSUs). From these collected paths, the common and frequent paths opted by the vehicles in a certain region are determined by using frequent arrangement mining approach. An estimation model is used to decidethe next path and the whole path map opted by the vehicles in unusual situations like accident, jams, or a particular time of day. The proposed scheme will helpthe society in reducing the waiting time in vent of emergency or normal working days.展开更多
Large cities suffer from traffic congestion,particularly at intersections,due to a large number of vehicles,which leads to the loss of time by increasing carbon emissions,including fuel consumption.Therefore,the need ...Large cities suffer from traffic congestion,particularly at intersections,due to a large number of vehicles,which leads to the loss of time by increasing carbon emissions,including fuel consumption.Therefore,the need for optimising the flow of vehicles at different intersections and reducing the waiting time is a critical challenge.Conventional traffic lights have been used to control traffic flow at different intersections and have been improved to become more efficient by using different algorithms,sensors and cameras.However,they also face some challenges,such as high-cost installation,operation,and maintenance issues.This paper develops a new system based on the Virtual Traffic Light(VTL)technology to improve traffic flow at different intersections and reduce the encountered loss of time and vehicles’travel time.Additionally,it reduces the costs of installation,maintenance and operation over various conventional traffic light systems.Consequently,the system proposes algorithms for traffic scheduling and lane identification by using vehicle ID,priority and time of arrival.To evaluate the system,four scenarios were presented where each scenario uses a different number of vehicles consisting of three types(emergency vehicles,public buses and private vehicles),each given a different priority.The proposed system is evaluated by integrating two simulators,namely,(OMNeT++)and(SUMO),and two frameworks,namely,(VEINS)and(INET)to prepare an appropriate working environment.the results prove that an improvement in the average travel time for several vehicles reaches 44.43%–49.76%compared with conventional traffic lights.Further,it is proven from the obtained results that the average waiting time for emergency vehicles is enhanced by 96.63%–97.63%,while the average waiting time for public buses is improved by 94.81%–97.23%.On the other hand,the waiting time for private vehicles‘improved by 87.14%to 89.71%’.展开更多
文摘Logical behavioral arrangements are a class of conventional arrangements to illustrate the happening of incidents in an appropriate and structured approach in vehicular ad hoc network (VANET). These incidents are characterized as a list of path segments that are passed through by the vehicles for the duration of their journeys from a pre-decided local source to a local destination in a structured manner. A set of proper description illustrating the paths traversed by the vehicles as logical behavioral arrangements is describedin this paper. The data gathering scheme based on secure authentication to gather the data from the vehicles is proposed in this paper. This proposed data gathering scheme based on secure authentication is compared with the existing data gathering schemes by using veins framework and the results of analysis reflect that the proposed scheme outperforms among others. The data collected from the vehicles by the proposed data gathering scheme is stored at distributed road side units (RSUs). From these collected paths, the common and frequent paths opted by the vehicles in a certain region are determined by using frequent arrangement mining approach. An estimation model is used to decidethe next path and the whole path map opted by the vehicles in unusual situations like accident, jams, or a particular time of day. The proposed scheme will helpthe society in reducing the waiting time in vent of emergency or normal working days.
文摘Large cities suffer from traffic congestion,particularly at intersections,due to a large number of vehicles,which leads to the loss of time by increasing carbon emissions,including fuel consumption.Therefore,the need for optimising the flow of vehicles at different intersections and reducing the waiting time is a critical challenge.Conventional traffic lights have been used to control traffic flow at different intersections and have been improved to become more efficient by using different algorithms,sensors and cameras.However,they also face some challenges,such as high-cost installation,operation,and maintenance issues.This paper develops a new system based on the Virtual Traffic Light(VTL)technology to improve traffic flow at different intersections and reduce the encountered loss of time and vehicles’travel time.Additionally,it reduces the costs of installation,maintenance and operation over various conventional traffic light systems.Consequently,the system proposes algorithms for traffic scheduling and lane identification by using vehicle ID,priority and time of arrival.To evaluate the system,four scenarios were presented where each scenario uses a different number of vehicles consisting of three types(emergency vehicles,public buses and private vehicles),each given a different priority.The proposed system is evaluated by integrating two simulators,namely,(OMNeT++)and(SUMO),and two frameworks,namely,(VEINS)and(INET)to prepare an appropriate working environment.the results prove that an improvement in the average travel time for several vehicles reaches 44.43%–49.76%compared with conventional traffic lights.Further,it is proven from the obtained results that the average waiting time for emergency vehicles is enhanced by 96.63%–97.63%,while the average waiting time for public buses is improved by 94.81%–97.23%.On the other hand,the waiting time for private vehicles‘improved by 87.14%to 89.71%’.