Failure data from oilfield showed that casings which were designed according to API standards were deformed and collapsed in salt formations. The main reason for decrease in strength may be caused by non-uniform loadi...Failure data from oilfield showed that casings which were designed according to API standards were deformed and collapsed in salt formations. The main reason for decrease in strength may be caused by non-uniform loading(NUL) that was not considered in traditional casing collapsing strength design or that the designing method should be improved and developed. Obviously, the calculation of casing collapse strength is one of the key factors in casing design. However, the effect of NUL on casing collapse strength was generally neglected in the present computational methods. Therefore, a mechanical model which can calculate casing collapse strength under NUL was established based on the curved beam theory of the elasticity and was solved using displacement method. Simultaneously, three anti-collapse experiments were performed on C110 casing under NUL, and the strain and deformation laws of three casings in the process of collapse were obtained by the electrical method. Yield limit of every casing was obtained by analyzing those data. Experimental results are consistent with the results of calculation of new model. It indicates that the model can be used to calculate yield limit loading of casings under NUL.展开更多
Nowadays,with the increasing operational life of ships,the aging effects on their structural behavior need to be investigated precisely.With the corrosive marine environment taken into consideration,one of the importa...Nowadays,with the increasing operational life of ships,the aging effects on their structural behavior need to be investigated precisely.With the corrosive marine environment taken into consideration,one of the important effects of aging that must be studied is thickness degradation.In this paper,with the use of previously proposed equivalent thickness formulations for corroded plates,the progressive collapse analysis software HULLST is enhanced,and then,the effects of different corrosion models of uniform,random,pitting,and tanker pattern types on the ultimate and residual strengths of a floating production,storage,and offloading vessel hull girder are evaluated for the ages of 0 to 25 years.Results reveal that the uniform corrosion and random corrosion models have close outcomes.The value of relative reduction in the ultimate strength of ship hull girder(compared with the intact condition)ranges roughly from 6%for the age of 5 years to 17%for the age of 25 years in the hogging mode.The relative reduction in the ultimate strength ranges from 4%to 16%in the sagging mode.Pitting corrosion and tanker pattern(random)corrosion models lead to higher relative reductions in ultimate strength.The pitting corrosion model leads to a 16%–32%relative reduction in the ultimate strength for the ages of 5–25 years of the ship in either hogging or sagging.The tanker pattern(random)corrosion model leads to a 6%–37%relative reduction in the ultimate strength in the hogging mode and 3%–31%in the sagging mode at ship ages of 5 to 25 years.展开更多
The objective of this paper is to computationally explore the structural stability and strength of gypsum-protected CFS(cold-formed steel)beam channel sections under non-uniform elevated temperatures when exposed to s...The objective of this paper is to computationally explore the structural stability and strength of gypsum-protected CFS(cold-formed steel)beam channel sections under non-uniform elevated temperatures when exposed to standard fire on one side of the panel and subjected to pure bending.When a CFS member is subjected to fire(or thermal gradients)its material properties change-but this change happens around the cross-section and along the length creating a member which is potentially non-uniform and unsymmetrical in its response even if the apparent geometry is uniform and symmetric.Computational finite element models were analyzed in ABAQUS to establish steady-state thermal gradients of interest.Existing test data were utilized to develop the temperature dependence of the stress-strain response.The time-dependent temperature distribution on the cross-sections obtained from heat transfer analysis was later used in the stability and collapse analyses.The stability of the models was explored to characterize how local,distortional,and global buckling of the member evolves under both uniform and non-uniform temperature distributions.Finally,collapse simulations were performed to characterize the strength under pure bending and explore directly the evolution of strength under the influence of non-uniform temperature.展开更多
基金Projects(51074135,51274170,51004084)supported by the National Natural Science Foundation of China
文摘Failure data from oilfield showed that casings which were designed according to API standards were deformed and collapsed in salt formations. The main reason for decrease in strength may be caused by non-uniform loading(NUL) that was not considered in traditional casing collapsing strength design or that the designing method should be improved and developed. Obviously, the calculation of casing collapse strength is one of the key factors in casing design. However, the effect of NUL on casing collapse strength was generally neglected in the present computational methods. Therefore, a mechanical model which can calculate casing collapse strength under NUL was established based on the curved beam theory of the elasticity and was solved using displacement method. Simultaneously, three anti-collapse experiments were performed on C110 casing under NUL, and the strain and deformation laws of three casings in the process of collapse were obtained by the electrical method. Yield limit of every casing was obtained by analyzing those data. Experimental results are consistent with the results of calculation of new model. It indicates that the model can be used to calculate yield limit loading of casings under NUL.
文摘Nowadays,with the increasing operational life of ships,the aging effects on their structural behavior need to be investigated precisely.With the corrosive marine environment taken into consideration,one of the important effects of aging that must be studied is thickness degradation.In this paper,with the use of previously proposed equivalent thickness formulations for corroded plates,the progressive collapse analysis software HULLST is enhanced,and then,the effects of different corrosion models of uniform,random,pitting,and tanker pattern types on the ultimate and residual strengths of a floating production,storage,and offloading vessel hull girder are evaluated for the ages of 0 to 25 years.Results reveal that the uniform corrosion and random corrosion models have close outcomes.The value of relative reduction in the ultimate strength of ship hull girder(compared with the intact condition)ranges roughly from 6%for the age of 5 years to 17%for the age of 25 years in the hogging mode.The relative reduction in the ultimate strength ranges from 4%to 16%in the sagging mode.Pitting corrosion and tanker pattern(random)corrosion models lead to higher relative reductions in ultimate strength.The pitting corrosion model leads to a 16%–32%relative reduction in the ultimate strength for the ages of 5–25 years of the ship in either hogging or sagging.The tanker pattern(random)corrosion model leads to a 6%–37%relative reduction in the ultimate strength in the hogging mode and 3%–31%in the sagging mode at ship ages of 5 to 25 years.
文摘The objective of this paper is to computationally explore the structural stability and strength of gypsum-protected CFS(cold-formed steel)beam channel sections under non-uniform elevated temperatures when exposed to standard fire on one side of the panel and subjected to pure bending.When a CFS member is subjected to fire(or thermal gradients)its material properties change-but this change happens around the cross-section and along the length creating a member which is potentially non-uniform and unsymmetrical in its response even if the apparent geometry is uniform and symmetric.Computational finite element models were analyzed in ABAQUS to establish steady-state thermal gradients of interest.Existing test data were utilized to develop the temperature dependence of the stress-strain response.The time-dependent temperature distribution on the cross-sections obtained from heat transfer analysis was later used in the stability and collapse analyses.The stability of the models was explored to characterize how local,distortional,and global buckling of the member evolves under both uniform and non-uniform temperature distributions.Finally,collapse simulations were performed to characterize the strength under pure bending and explore directly the evolution of strength under the influence of non-uniform temperature.