为了解决现有电网换相换流器(LCC)与模块化多电平换流器(MMC)组成的混合高压直流(HVDC)输电系统采用半桥MMC时不具有直流侧故障清除能力、采用全桥MMC时成本过高的问题,提出了一种使用新型的电流单向型MMC与LCC连接构成的混合直...为了解决现有电网换相换流器(LCC)与模块化多电平换流器(MMC)组成的混合高压直流(HVDC)输电系统采用半桥MMC时不具有直流侧故障清除能力、采用全桥MMC时成本过高的问题,提出了一种使用新型的电流单向型MMC与LCC连接构成的混合直流输电系统。构建了单极800 k V/2 500 MW的双端系统模型,对其启动过程、典型故障过程和功率反转过程进行了仿真,结果表明提出的混合系统具有可行性、直流故障清除能力、短时无功支撑能力和双向功率传输能力。展开更多
Recent investigations have shown that with varying the amplitude of the external force, the deterministic ratchets exhibit multiple current reversals, which are undesirable in certain circumstances. To control the mul...Recent investigations have shown that with varying the amplitude of the external force, the deterministic ratchets exhibit multiple current reversals, which are undesirable in certain circumstances. To control the multiple reverse current to unidirectional current, an adaptive control law is presented inspired from the relation between multiple reversaJs current and the chaos-periodic/quasiperiodic transition of the transport velocity. The designed controller can stabilize the transport velocity of ratchets to steady state and suppress any chaos-periodic/quasiperiodic transition, namely, the stable transport in ratchets is achieved, which makes the current sign unchanged.展开更多
Authors developed a highly effective brushless DC motor with a simple operation principle. If the operation principle of the motor is simple, a drive circuit will also become simple and its production cost will be low...Authors developed a highly effective brushless DC motor with a simple operation principle. If the operation principle of the motor is simple, a drive circuit will also become simple and its production cost will be lower. From the above fact, Minato motor was noticed. In this motor, a unidirectional current flows in the electromagnets. In other words, unidirectional windings are used. In this motor, only strong repulsive force is utilized when a permanent magnet of a rotor and an electromagnet of a stator are adjacent. Hence, torque constant becomes higher and the efficiency of the motor is high. However, an effective value of the electromagnetic current increases because a large current flows in a short period. Therefore, copper loss increases and the efficiency of the motor decreases. In order to solve above defects, a new motor is proposed. From the experiment, it is clarified that the efficiency of the proposed motor is higher than that of the commercial motors.展开更多
Considering the S L interface morphology stability, the S L interface energy, the Joule heat produced by electric current at the S L interface, and the change of solute concentration at the S L interface indirectly ca...Considering the S L interface morphology stability, the S L interface energy, the Joule heat produced by electric current at the S L interface, and the change of solute concentration at the S L interface indirectly caused by electric current, the mechanism of reduction of columnar dendrite spacing in unidirectional solidification caused by electric current passing through solid liquid interface was studied. The following conclusions can be drawn that: 1) under sub rapid solidification condition, increasing electric current density will improve the stability of S L interface, thus decreasing the columnar dendrite spacing; 2)there are two ways by which the increase of electric current decreases the columnar dendrite spacing, one is promoting the splitting of the protruding tips at the S L interface, the other is promoting the forming of new convex parts at the bottom of the concave interface.[展开更多
On the basis of previous theoretical inferential relationship between the columnar crystal spacing and the density of electric current applied during unidirectional solidification, the effect of current density on the...On the basis of previous theoretical inferential relationship between the columnar crystal spacing and the density of electric current applied during unidirectional solidification, the effect of current density on the columnar crystal spacing was discussed and analyzed, and the experiment was made to verify the theoretical relationship. The results show that at fast solidification speed the columnar crystal spacing decreases with increasing the density of electric current, while at slow solidification speed the columnar crystal spacing increases with increasing the density of electric current. The critical conditions for the evolution of columnar crystal spacing were confirmed. The calculated values concerning the spacing and the density are consistent with the experimental results.展开更多
直流电网是解决新能源发电并网稳定性问题的研究热点。DC-DC变换器是连接不同电压等级直流电网的关键器件。MMC型DC-DC变换器采用模块化的拓扑结构,因而适用于高压大功率场合,其中单向MMC型DC-DC变换器适用于功率传输方向一定的电压变...直流电网是解决新能源发电并网稳定性问题的研究热点。DC-DC变换器是连接不同电压等级直流电网的关键器件。MMC型DC-DC变换器采用模块化的拓扑结构,因而适用于高压大功率场合,其中单向MMC型DC-DC变换器适用于功率传输方向一定的电压变换场合,造价低、控制方式简单。但是目前对该拓扑的研究还比较少,相应的控制策略仍主要沿用MMC传统电平逼近的控制策略,国内目前也尚未有实际的示范工程,因此还需对该拓扑进行更深入的研究,提出适用于该拓扑的控制策略,为实际的示范工程提供一定的参考。该文提出了一种新型的适用于单向M M C型DC-DC变换器的控制策略,该控制策略将传统的电压追踪转变为电流追踪,在每个周期开始时刻计算出子模块的开通个数,通过控制子模块的开通和关断,使输出电流跟随参考电流变化。最后搭建了单向MMC型DC-DC变换器的仿真模型,仿真结果表明该控制策略可以很好地实现电压变换,输入侧电流波动小,是一种有效的控制策略。展开更多
文摘为了解决现有电网换相换流器(LCC)与模块化多电平换流器(MMC)组成的混合高压直流(HVDC)输电系统采用半桥MMC时不具有直流侧故障清除能力、采用全桥MMC时成本过高的问题,提出了一种使用新型的电流单向型MMC与LCC连接构成的混合直流输电系统。构建了单极800 k V/2 500 MW的双端系统模型,对其启动过程、典型故障过程和功率反转过程进行了仿真,结果表明提出的混合系统具有可行性、直流故障清除能力、短时无功支撑能力和双向功率传输能力。
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10862001 and 10947011the Construction of Key Laboratories in Universities of Guangxi under Grant No. 200912
文摘Recent investigations have shown that with varying the amplitude of the external force, the deterministic ratchets exhibit multiple current reversals, which are undesirable in certain circumstances. To control the multiple reverse current to unidirectional current, an adaptive control law is presented inspired from the relation between multiple reversaJs current and the chaos-periodic/quasiperiodic transition of the transport velocity. The designed controller can stabilize the transport velocity of ratchets to steady state and suppress any chaos-periodic/quasiperiodic transition, namely, the stable transport in ratchets is achieved, which makes the current sign unchanged.
文摘Authors developed a highly effective brushless DC motor with a simple operation principle. If the operation principle of the motor is simple, a drive circuit will also become simple and its production cost will be lower. From the above fact, Minato motor was noticed. In this motor, a unidirectional current flows in the electromagnets. In other words, unidirectional windings are used. In this motor, only strong repulsive force is utilized when a permanent magnet of a rotor and an electromagnet of a stator are adjacent. Hence, torque constant becomes higher and the efficiency of the motor is high. However, an effective value of the electromagnetic current increases because a large current flows in a short period. Therefore, copper loss increases and the efficiency of the motor decreases. In order to solve above defects, a new motor is proposed. From the experiment, it is clarified that the efficiency of the proposed motor is higher than that of the commercial motors.
文摘Considering the S L interface morphology stability, the S L interface energy, the Joule heat produced by electric current at the S L interface, and the change of solute concentration at the S L interface indirectly caused by electric current, the mechanism of reduction of columnar dendrite spacing in unidirectional solidification caused by electric current passing through solid liquid interface was studied. The following conclusions can be drawn that: 1) under sub rapid solidification condition, increasing electric current density will improve the stability of S L interface, thus decreasing the columnar dendrite spacing; 2)there are two ways by which the increase of electric current decreases the columnar dendrite spacing, one is promoting the splitting of the protruding tips at the S L interface, the other is promoting the forming of new convex parts at the bottom of the concave interface.[
文摘On the basis of previous theoretical inferential relationship between the columnar crystal spacing and the density of electric current applied during unidirectional solidification, the effect of current density on the columnar crystal spacing was discussed and analyzed, and the experiment was made to verify the theoretical relationship. The results show that at fast solidification speed the columnar crystal spacing decreases with increasing the density of electric current, while at slow solidification speed the columnar crystal spacing increases with increasing the density of electric current. The critical conditions for the evolution of columnar crystal spacing were confirmed. The calculated values concerning the spacing and the density are consistent with the experimental results.
文摘直流电网是解决新能源发电并网稳定性问题的研究热点。DC-DC变换器是连接不同电压等级直流电网的关键器件。MMC型DC-DC变换器采用模块化的拓扑结构,因而适用于高压大功率场合,其中单向MMC型DC-DC变换器适用于功率传输方向一定的电压变换场合,造价低、控制方式简单。但是目前对该拓扑的研究还比较少,相应的控制策略仍主要沿用MMC传统电平逼近的控制策略,国内目前也尚未有实际的示范工程,因此还需对该拓扑进行更深入的研究,提出适用于该拓扑的控制策略,为实际的示范工程提供一定的参考。该文提出了一种新型的适用于单向M M C型DC-DC变换器的控制策略,该控制策略将传统的电压追踪转变为电流追踪,在每个周期开始时刻计算出子模块的开通个数,通过控制子模块的开通和关断,使输出电流跟随参考电流变化。最后搭建了单向MMC型DC-DC变换器的仿真模型,仿真结果表明该控制策略可以很好地实现电压变换,输入侧电流波动小,是一种有效的控制策略。