In this paper, two ultra-wide band power dividers are introduced. Compact equal power divider is considered firstly where an extended transmission lines and double open stubs are used in order to increase the bandwidt...In this paper, two ultra-wide band power dividers are introduced. Compact equal power divider is considered firstly where an extended transmission lines and double open stubs are used in order to increase the bandwidth. Secondly, an unequal UWB power divider is introduced where multi-stage impedance is used. The proposed power dividers are fabricated and measured. The overall sizes of the proposed power dividers are 11.37 × 17.87 mm2 for the equal one and 12.13 × 29.03 mm2 for the unequal power divider. The simulated results are compared with the measured results and good agreement is obtained.展开更多
利用ABCD矩阵法分析得出:当传统微带线电长度为0°~180°时,低阻抗平衡CRLH TL可替代高阻抗传统微带线。根据分析结果,同时结合不等分Wilkinson功分器的设计原理,用特征阻抗为75?的CRLH TL代替274?的传统λ/4微带线,设计了一款...利用ABCD矩阵法分析得出:当传统微带线电长度为0°~180°时,低阻抗平衡CRLH TL可替代高阻抗传统微带线。根据分析结果,同时结合不等分Wilkinson功分器的设计原理,用特征阻抗为75?的CRLH TL代替274?的传统λ/4微带线,设计了一款工作于2.4 GHz,功分比为9:1的高功分比不等分功分器。测试结果表明:插入损耗S_(31)和S_(21)在工作频率处的差值为9.35 d B,回波损耗在2.29~2.5 GHz范围内小于–20 d B,隔离度在2~2.6GHz范围内小于–20 d B。展开更多
文摘In this paper, two ultra-wide band power dividers are introduced. Compact equal power divider is considered firstly where an extended transmission lines and double open stubs are used in order to increase the bandwidth. Secondly, an unequal UWB power divider is introduced where multi-stage impedance is used. The proposed power dividers are fabricated and measured. The overall sizes of the proposed power dividers are 11.37 × 17.87 mm2 for the equal one and 12.13 × 29.03 mm2 for the unequal power divider. The simulated results are compared with the measured results and good agreement is obtained.
文摘利用ABCD矩阵法分析得出:当传统微带线电长度为0°~180°时,低阻抗平衡CRLH TL可替代高阻抗传统微带线。根据分析结果,同时结合不等分Wilkinson功分器的设计原理,用特征阻抗为75?的CRLH TL代替274?的传统λ/4微带线,设计了一款工作于2.4 GHz,功分比为9:1的高功分比不等分功分器。测试结果表明:插入损耗S_(31)和S_(21)在工作频率处的差值为9.35 d B,回波损耗在2.29~2.5 GHz范围内小于–20 d B,隔离度在2~2.6GHz范围内小于–20 d B。