This study examined the hydrological modeling of aquifers and their ground water potentials for the purposes of water resources planning and management. This was done using the electrical resistivity method employing ...This study examined the hydrological modeling of aquifers and their ground water potentials for the purposes of water resources planning and management. This was done using the electrical resistivity method employing the schlumberger electrode configuration at randomly selected stations to obtain the thicknesses and resistivities of each layer and depth to the presumably conglomeratic sand stone and its resistivity. Findings showed that the top soil layer resistivity values vary from 59.3 to 248.4 ohm-m and thickness of 0.6 to 3.9 m. The second layer has resistivity values ranging from 45.0 to 743.5 ohm-m and a thickness range of 1.5 to 13.8 m. The wet sand is characterized by resistivity values ranging from 144.8 to 1930.2 ohm-m and a thickness range of 3.8 to 65.8 m. The conglomeratic sand/sand stone has resistivity values ranging from 55.8 to 7719.8 ohm-m. The depth to this bottom layer varies from 6.6 to 89.5 m. Findings indicate that the entire profile is a sedimentary formation represented by lithological units of sand and clayey sand which make for a good groundwater potentials. However, the groundwater potential zones of the study area in terms of transmisivity revealed four distinct classes representing “very good” (Mgbuosimini, Rumuigbo, Okporo, Rumuomasi and Rumuodara), “good” (Alakahia, Rumuodomaya, Oginigba and Rumuola), “moderate” (Aluu, Rumuekeni, Rumuokoro, Rumuobiakani and Rumueme), and “low” (Ogbogoro, Ozuoba, Akpajio, Elelenwo, Eliozu, Rumuepirikon, Rumuokwuta, Rumuebekwe and Rumurolu) groundwater potential in the area. Well logging should therefore be incorporated in borehole development process for safe and sustainable yield of groundwater in Obio/Akpor.展开更多
文摘This study examined the hydrological modeling of aquifers and their ground water potentials for the purposes of water resources planning and management. This was done using the electrical resistivity method employing the schlumberger electrode configuration at randomly selected stations to obtain the thicknesses and resistivities of each layer and depth to the presumably conglomeratic sand stone and its resistivity. Findings showed that the top soil layer resistivity values vary from 59.3 to 248.4 ohm-m and thickness of 0.6 to 3.9 m. The second layer has resistivity values ranging from 45.0 to 743.5 ohm-m and a thickness range of 1.5 to 13.8 m. The wet sand is characterized by resistivity values ranging from 144.8 to 1930.2 ohm-m and a thickness range of 3.8 to 65.8 m. The conglomeratic sand/sand stone has resistivity values ranging from 55.8 to 7719.8 ohm-m. The depth to this bottom layer varies from 6.6 to 89.5 m. Findings indicate that the entire profile is a sedimentary formation represented by lithological units of sand and clayey sand which make for a good groundwater potentials. However, the groundwater potential zones of the study area in terms of transmisivity revealed four distinct classes representing “very good” (Mgbuosimini, Rumuigbo, Okporo, Rumuomasi and Rumuodara), “good” (Alakahia, Rumuodomaya, Oginigba and Rumuola), “moderate” (Aluu, Rumuekeni, Rumuokoro, Rumuobiakani and Rumueme), and “low” (Ogbogoro, Ozuoba, Akpajio, Elelenwo, Eliozu, Rumuepirikon, Rumuokwuta, Rumuebekwe and Rumurolu) groundwater potential in the area. Well logging should therefore be incorporated in borehole development process for safe and sustainable yield of groundwater in Obio/Akpor.