To ensure the safety and reliability of the distribution network and adapt to the uncertain development of renewable energy sources and loads,a two-stage distributionally robust optimization model is proposed for the ...To ensure the safety and reliability of the distribution network and adapt to the uncertain development of renewable energy sources and loads,a two-stage distributionally robust optimization model is proposed for the active distribution network(ADN)optimization problem considering the uncertainties of the source and load in this paper.By establishing an ambiguity set to capture the uncertainties of the photovoltaic(PV)power,wind power and load,the piecewise-linear function and auxiliary parameters are introduced to help characterize the probability distribution of uncertain variables.The optimization goal of the model is to minimize the total expected cost under the worst-case distribution in the ambiguity set.The first-stage expected cost is obtained based on the predicted value of the uncertainty variable.The second-stage expected cost is based on the actual value of the uncertainty variable to solve the first-stage decision.The generalized linear decision rule approximates the two-stage optimization model,and the affine function is introduced to provide a closer approximation to the second-stage optimization model.Finally,the improved IEEE 33-node and IEEE 118-node systems are simulated and analyzed with deterministic methods,stochastic programming,and robust optimization methods to verify the feasibility and superiority of the proposed model and algorithm.展开更多
计及高比例分布式光伏出力和海量柔性负荷双重高不确定性的“源-网-荷”协调运行是发展新型电力系统亟需解决的难点问题。为此,首先考虑主动负荷的灵活可调节性和需求响应特性,以最小化运行成本为目标建立台区经济自治运行确定性优化模...计及高比例分布式光伏出力和海量柔性负荷双重高不确定性的“源-网-荷”协调运行是发展新型电力系统亟需解决的难点问题。为此,首先考虑主动负荷的灵活可调节性和需求响应特性,以最小化运行成本为目标建立台区经济自治运行确定性优化模型;在此基础上,构造表征源侧和荷侧波动特征的鲁棒多面体不确定集合,构建计及源荷侧双重不确定性的台区经济自治运行不确定性优化模型;随后通过鲁棒对等将其转换为可解耦迭代求解的鲁棒优化模型,采用交替方向乘子算法(alternating direction method of multipliers,ADMM)实现了模型的分布式迭代求解。通过仿真对比实验,得出计及源荷侧双重高不确定性的台区经济运行的分布式优化方法在求解效率上优于集中式优化方法,且其能降低用户用电成本的同时促进分布式光伏消纳。展开更多
基金supported by Natural Science Foundation of Beijing Municipality(No.3161002)National Key R&D Program(No.2017YFB0903300).
文摘To ensure the safety and reliability of the distribution network and adapt to the uncertain development of renewable energy sources and loads,a two-stage distributionally robust optimization model is proposed for the active distribution network(ADN)optimization problem considering the uncertainties of the source and load in this paper.By establishing an ambiguity set to capture the uncertainties of the photovoltaic(PV)power,wind power and load,the piecewise-linear function and auxiliary parameters are introduced to help characterize the probability distribution of uncertain variables.The optimization goal of the model is to minimize the total expected cost under the worst-case distribution in the ambiguity set.The first-stage expected cost is obtained based on the predicted value of the uncertainty variable.The second-stage expected cost is based on the actual value of the uncertainty variable to solve the first-stage decision.The generalized linear decision rule approximates the two-stage optimization model,and the affine function is introduced to provide a closer approximation to the second-stage optimization model.Finally,the improved IEEE 33-node and IEEE 118-node systems are simulated and analyzed with deterministic methods,stochastic programming,and robust optimization methods to verify the feasibility and superiority of the proposed model and algorithm.
文摘计及高比例分布式光伏出力和海量柔性负荷双重高不确定性的“源-网-荷”协调运行是发展新型电力系统亟需解决的难点问题。为此,首先考虑主动负荷的灵活可调节性和需求响应特性,以最小化运行成本为目标建立台区经济自治运行确定性优化模型;在此基础上,构造表征源侧和荷侧波动特征的鲁棒多面体不确定集合,构建计及源荷侧双重不确定性的台区经济自治运行不确定性优化模型;随后通过鲁棒对等将其转换为可解耦迭代求解的鲁棒优化模型,采用交替方向乘子算法(alternating direction method of multipliers,ADMM)实现了模型的分布式迭代求解。通过仿真对比实验,得出计及源荷侧双重高不确定性的台区经济运行的分布式优化方法在求解效率上优于集中式优化方法,且其能降低用户用电成本的同时促进分布式光伏消纳。