TiO2-CeO2 films were deposited on soda-lime glass substrates at varied substrate temperatures by rf magnetron sputtering using 40% molar TiO2-60% molar CeO2 ceramic target in Ar:O2=95:5 atmosphere.The structure,surf...TiO2-CeO2 films were deposited on soda-lime glass substrates at varied substrate temperatures by rf magnetron sputtering using 40% molar TiO2-60% molar CeO2 ceramic target in Ar:O2=95:5 atmosphere.The structure,surface composition,UV-visible spectra of the films were measured by scanning electron microscopy and X-ray diffraction,and X-ray photoelectron spectroscopy,respectively.The experimental results show that the films are amorphous,there are only Ti^4+ and Ce^4+ on the surface of the films,the obtained TiO2-CeO2 films shou a good uniformity and high densification,and the films deposited on the glass can shield ultraviolet light without significant absorpition of visible light,the films deposited on substrates at room temperature and 220℃ absorb UV effectively.展开更多
Ultraviolet-shielding and conductive double functional films were composed of CeO2-TiO2 film and SnO2:Sb film deposited on glass substrates using sol-gel process.Ce(NO3)3·6H2O and Ti(C4H9O4),SnCl4 and SbCl3 were ...Ultraviolet-shielding and conductive double functional films were composed of CeO2-TiO2 film and SnO2:Sb film deposited on glass substrates using sol-gel process.Ce(NO3)3·6H2O and Ti(C4H9O4),SnCl4 and SbCl3 were used as precursors of the two different functional films respectively.The CeO2-TiO2 films were deposited on glass substrates by sol-gel dip coating method,and then the SnO2:Sb films with different thickness were deposited on the pre-coated CeO2-TiO2 thin film glass substrates,finally,the substrates coated with double functional films were annealed at different temperatures.The optical and electrical properties of the CeO2-TiO2 films and the double films were measured by UV-Vis spectrometer and four probe resistance measuring instrument.The crystal structures and surface morphology of the films were characterized using XRD and optical microscope,respectively.The obtained results show that the ultraviolet-shielding rate of the glass substrates with CeO2-TiO2 films is not less than 90%,and transmittance in visible lights can reach 65%.With the thickness of the SnO2:Sb film increasing,its conductivity became better,and the surface resistance is about 260 Ω/ when the SnO2:Sb films were deposited 11 cycles of the dip on the pre-coated CeO2-TiO2 glass.The ultraviolet-shielding rate of the glass substrates with double functional films is higher than 97%,and the peak transmittance in the visible lights is 72%.Additionally,with increasing the heat treatment time,the Na+ of the glass substrates diffuses into the films,resulting in the particle size of SnO2 crystal smaller.展开更多
The aim of this study was to synthesize and evaluate the thermal properties and ultraviolet(UV)resistance of zinc oxide-functionalized halloysite nanotubes(HNT–ZnO).The HNT–ZnO was synthesized using a facile solvent...The aim of this study was to synthesize and evaluate the thermal properties and ultraviolet(UV)resistance of zinc oxide-functionalized halloysite nanotubes(HNT–ZnO).The HNT–ZnO was synthesized using a facile solvent-free route.The properties of the HNT–ZnO nanofillers were characterized using zeta-potential measurement,X-ray diffraction(XRD),field-emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),Fourier transform infrared spectroscopy(FTIR),and thermogravimetric analysis(TGA).The immobilization of ZnO nanoparticles onto HNT is feasible even at the lowest mass ratio of HNT/ZnO.The TGA results indicate that the thermal stability of the HNT–ZnO nanofillers is higher than that of the HNT.Furthermore,UV?Vis diffuse reflectance spectroscopy(UV-DRS)results show that the HNT–ZnO achieve a total reflectance as high as approximately 87.5%in the UV region,as compare with 66.9%for the HNT.In summary,the immobilization of ZnO onto HNT is a viable approach for increasing the thermal stability and improving the UV shielding of HNT.展开更多
文摘TiO2-CeO2 films were deposited on soda-lime glass substrates at varied substrate temperatures by rf magnetron sputtering using 40% molar TiO2-60% molar CeO2 ceramic target in Ar:O2=95:5 atmosphere.The structure,surface composition,UV-visible spectra of the films were measured by scanning electron microscopy and X-ray diffraction,and X-ray photoelectron spectroscopy,respectively.The experimental results show that the films are amorphous,there are only Ti^4+ and Ce^4+ on the surface of the films,the obtained TiO2-CeO2 films shou a good uniformity and high densification,and the films deposited on the glass can shield ultraviolet light without significant absorpition of visible light,the films deposited on substrates at room temperature and 220℃ absorb UV effectively.
基金Project supported by the Special Fund of Jiangsu Province for the Transformation of Scientific and Technological achievements
文摘Ultraviolet-shielding and conductive double functional films were composed of CeO2-TiO2 film and SnO2:Sb film deposited on glass substrates using sol-gel process.Ce(NO3)3·6H2O and Ti(C4H9O4),SnCl4 and SbCl3 were used as precursors of the two different functional films respectively.The CeO2-TiO2 films were deposited on glass substrates by sol-gel dip coating method,and then the SnO2:Sb films with different thickness were deposited on the pre-coated CeO2-TiO2 thin film glass substrates,finally,the substrates coated with double functional films were annealed at different temperatures.The optical and electrical properties of the CeO2-TiO2 films and the double films were measured by UV-Vis spectrometer and four probe resistance measuring instrument.The crystal structures and surface morphology of the films were characterized using XRD and optical microscope,respectively.The obtained results show that the ultraviolet-shielding rate of the glass substrates with CeO2-TiO2 films is not less than 90%,and transmittance in visible lights can reach 65%.With the thickness of the SnO2:Sb film increasing,its conductivity became better,and the surface resistance is about 260 Ω/ when the SnO2:Sb films were deposited 11 cycles of the dip on the pre-coated CeO2-TiO2 glass.The ultraviolet-shielding rate of the glass substrates with double functional films is higher than 97%,and the peak transmittance in the visible lights is 72%.Additionally,with increasing the heat treatment time,the Na+ of the glass substrates diffuses into the films,resulting in the particle size of SnO2 crystal smaller.
基金Universiti Sains Malaysia for Bridging Fund(grant No.304.PBAHAN.6316090)
文摘The aim of this study was to synthesize and evaluate the thermal properties and ultraviolet(UV)resistance of zinc oxide-functionalized halloysite nanotubes(HNT–ZnO).The HNT–ZnO was synthesized using a facile solvent-free route.The properties of the HNT–ZnO nanofillers were characterized using zeta-potential measurement,X-ray diffraction(XRD),field-emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),Fourier transform infrared spectroscopy(FTIR),and thermogravimetric analysis(TGA).The immobilization of ZnO nanoparticles onto HNT is feasible even at the lowest mass ratio of HNT/ZnO.The TGA results indicate that the thermal stability of the HNT–ZnO nanofillers is higher than that of the HNT.Furthermore,UV?Vis diffuse reflectance spectroscopy(UV-DRS)results show that the HNT–ZnO achieve a total reflectance as high as approximately 87.5%in the UV region,as compare with 66.9%for the HNT.In summary,the immobilization of ZnO onto HNT is a viable approach for increasing the thermal stability and improving the UV shielding of HNT.