This article develops a procedure for screening variables, in ultra high-di- mensional settings, based on their predictive significance. This is achieved by ranking the variables according to the variance of their res...This article develops a procedure for screening variables, in ultra high-di- mensional settings, based on their predictive significance. This is achieved by ranking the variables according to the variance of their respective marginal regression functions (RV-SIS). We show that, under some mild technical conditions, the RV-SIS possesses a sure screening property, which is defined by Fan and Lv (2008). Numerical comparisons suggest that RV-SIS has competitive performance compared to other screening procedures, and outperforms them in many different model settings.展开更多
Next Generation Sequencing (NGS) provides an effective basis for estimating the survival time of cancer patients, but it also poses the problem of high data dimensionality, in addition to the fact that some patients d...Next Generation Sequencing (NGS) provides an effective basis for estimating the survival time of cancer patients, but it also poses the problem of high data dimensionality, in addition to the fact that some patients drop out of the study, making the data missing, so a method for estimating the mean of the response variable with missing values for the ultra-high dimensional datasets is needed. In this paper, we propose a two-stage ultra-high dimensional variable screening method, RF-SIS, based on random forest regression, which effectively solves the problem of estimating missing values due to excessive data dimension. After the dimension reduction process by applying RF-SIS, mean interpolation is executed on the missing responses. The results of the simulated data show that compared with the estimation method of directly deleting missing observations, the estimation results of RF-SIS-MI have significant advantages in terms of the proportion of intervals covered, the average length of intervals, and the average absolute deviation.展开更多
文摘This article develops a procedure for screening variables, in ultra high-di- mensional settings, based on their predictive significance. This is achieved by ranking the variables according to the variance of their respective marginal regression functions (RV-SIS). We show that, under some mild technical conditions, the RV-SIS possesses a sure screening property, which is defined by Fan and Lv (2008). Numerical comparisons suggest that RV-SIS has competitive performance compared to other screening procedures, and outperforms them in many different model settings.
文摘Next Generation Sequencing (NGS) provides an effective basis for estimating the survival time of cancer patients, but it also poses the problem of high data dimensionality, in addition to the fact that some patients drop out of the study, making the data missing, so a method for estimating the mean of the response variable with missing values for the ultra-high dimensional datasets is needed. In this paper, we propose a two-stage ultra-high dimensional variable screening method, RF-SIS, based on random forest regression, which effectively solves the problem of estimating missing values due to excessive data dimension. After the dimension reduction process by applying RF-SIS, mean interpolation is executed on the missing responses. The results of the simulated data show that compared with the estimation method of directly deleting missing observations, the estimation results of RF-SIS-MI have significant advantages in terms of the proportion of intervals covered, the average length of intervals, and the average absolute deviation.