The dispersion of ultrafine particles in the air can be achieved by mechanical method or surface modification. In this work, the electrostatic technique was first employed for anti-aggregation of ultrafine particles. ...The dispersion of ultrafine particles in the air can be achieved by mechanical method or surface modification. In this work, the electrostatic technique was first employed for anti-aggregation of ultrafine particles. When the relative humidity of the air is within the region of 70%-75%, effective storage time of ultrafine particles can reach 72 h after treatment by the electrostatic technique. The experimental results showed that this technique imparted ultrafine particles much more pronounced anti-aggregation property. In the dry air, the critical diameter of ultrafine particles anti-aggregated by the electrostatic technique is the function of particle property and charging field intensity. The critical diameter is inversely proportional to the square of the charging field intensity.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59574031).
文摘The dispersion of ultrafine particles in the air can be achieved by mechanical method or surface modification. In this work, the electrostatic technique was first employed for anti-aggregation of ultrafine particles. When the relative humidity of the air is within the region of 70%-75%, effective storage time of ultrafine particles can reach 72 h after treatment by the electrostatic technique. The experimental results showed that this technique imparted ultrafine particles much more pronounced anti-aggregation property. In the dry air, the critical diameter of ultrafine particles anti-aggregated by the electrostatic technique is the function of particle property and charging field intensity. The critical diameter is inversely proportional to the square of the charging field intensity.