A bright white quantum dot light-emitting device (white-QLED) with 4-[4-(1-phenyl-lH-benzo[d]imidazol-2- yl)phenyl]-2- [3-(tri-phenylen-2-yl)phen-3-yl]quinazoline deposited on a thin film of mixed green/red-QDs ...A bright white quantum dot light-emitting device (white-QLED) with 4-[4-(1-phenyl-lH-benzo[d]imidazol-2- yl)phenyl]-2- [3-(tri-phenylen-2-yl)phen-3-yl]quinazoline deposited on a thin film of mixed green/red-QDs as a bilayer emitter is fabricated. The optimized white-QLED exhibits a turn-on voltage of 3.2 V and a maximum brightness of 3660 cd/m2 @8 V with the Commission Internationale de l'Eclairage (CIE) chromaticity in the region of white light. The ultra-thin layer of QDs is proved to be critical for the white light generation in the devices. Excitation mechanism in the white-QLEDs is investigated by the detailed analyses of electroluminescence (EL) spectral and the fluorescence lifetime of QDs. The results show that charge injection is a dominant mechanism of excitation in the white-QLED.展开更多
Due to the strong shearing field during processing,untra-thin injection molded CNT-filled polypropylene(PP) always forms a strong CNT orientation along the flow direction,which results in its anisotropic conductivity....Due to the strong shearing field during processing,untra-thin injection molded CNT-filled polypropylene(PP) always forms a strong CNT orientation along the flow direction,which results in its anisotropic conductivity.In order to evaluate the mechanism on recovery of the orientation,we processed the molding under the condition of different thermal compressive strains with modified hot-rolling machine.The stability of the molding's conductivity after rolling was studied under the action of alternated loading.The disoriented behavior of the microstructures during rolling was observed by SEM and 2 D-WAXD,and the degree of orientation of CNT was calculated.The conductivity of the sample was measured using a standard two-terminal DC resistor.The results showed that the deformation resistance in the rolling direction was greater than that in the transverse deformation under the action of large thermal compressive strain.The samples would mainly deform in the transverse direction and not elongate in the direction of the rolling,which could speed up the recovery of the orientation structure and reduce the anisotropy of the conductivity.The recovery speed of the orientation was related to the level of the thermal compressive strain.After the hotrolling processing,the stability of the sample's conductivity under the alternating load was improved because of the effect induced by polymer strengthening.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.21302122)the Science and Technology Commission of Shanghai Municipality,China(Grant No.13ZR1416600)
文摘A bright white quantum dot light-emitting device (white-QLED) with 4-[4-(1-phenyl-lH-benzo[d]imidazol-2- yl)phenyl]-2- [3-(tri-phenylen-2-yl)phen-3-yl]quinazoline deposited on a thin film of mixed green/red-QDs as a bilayer emitter is fabricated. The optimized white-QLED exhibits a turn-on voltage of 3.2 V and a maximum brightness of 3660 cd/m2 @8 V with the Commission Internationale de l'Eclairage (CIE) chromaticity in the region of white light. The ultra-thin layer of QDs is proved to be critical for the white light generation in the devices. Excitation mechanism in the white-QLEDs is investigated by the detailed analyses of electroluminescence (EL) spectral and the fluorescence lifetime of QDs. The results show that charge injection is a dominant mechanism of excitation in the white-QLED.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51373048 and U1604253)
文摘Due to the strong shearing field during processing,untra-thin injection molded CNT-filled polypropylene(PP) always forms a strong CNT orientation along the flow direction,which results in its anisotropic conductivity.In order to evaluate the mechanism on recovery of the orientation,we processed the molding under the condition of different thermal compressive strains with modified hot-rolling machine.The stability of the molding's conductivity after rolling was studied under the action of alternated loading.The disoriented behavior of the microstructures during rolling was observed by SEM and 2 D-WAXD,and the degree of orientation of CNT was calculated.The conductivity of the sample was measured using a standard two-terminal DC resistor.The results showed that the deformation resistance in the rolling direction was greater than that in the transverse deformation under the action of large thermal compressive strain.The samples would mainly deform in the transverse direction and not elongate in the direction of the rolling,which could speed up the recovery of the orientation structure and reduce the anisotropy of the conductivity.The recovery speed of the orientation was related to the level of the thermal compressive strain.After the hotrolling processing,the stability of the sample's conductivity under the alternating load was improved because of the effect induced by polymer strengthening.