Ultra-supercritical(USC) unit is more and more popular in coal-fired power industry.In this paper,closed-loop identification based on subspace model identification(SMI) is introduced for superheated steam temperature ...Ultra-supercritical(USC) unit is more and more popular in coal-fired power industry.In this paper,closed-loop identification based on subspace model identification(SMI) is introduced for superheated steam temperature system of USC unit.Closed-loop SMI is applied to building step response model of the unit directly.The parameters selection method is proposed to deal with the parameter sensitivity and improve the reliability of the model.Finally,the model is used in model identification of real USC unit.展开更多
700°C double reheat advanced ultra-supercritical power generation technology is one of the most important development directions for the efficient and clean utilization of coal.To solve the great exergy loss prob...700°C double reheat advanced ultra-supercritical power generation technology is one of the most important development directions for the efficient and clean utilization of coal.To solve the great exergy loss problem caused by the high superheat degrees of regenerative steam extractions in 700°C double reheat advanced ultra-supercritical power generation system,two optimization systems are proposed in this paper.System 1 is integrated with the back pressure extraction steam turbine,and system 2 is simultaneously integrated with both the outside steam cooler and back pressure extraction steam turbine.The system performance models are built by the Ebsilon Professional software.The performances of optimized systems are analyzed by the unit consumption method.The off-design performances of optimization systems are analyzed.The results show that:the standard power generation coal consumption rates of optimization systems 1 and 2 are decreased by 1.88 g·(kW·h)^(–1),2.97 g·(kW·h)^(–1)compared with that of the 700°C reference system;the average superheat degrees of regenerative steam extractions of optimized systems 1 and 2 are decreased by 122.2°C,140.7°C(100%turbine heat acceptance condition),respectively.The comparison results also show that the performance of the optimized system 2 is better than those of the optimized system 1 and the 700°C reference system.The power generation standard coal consumption rate and the power generation efficiency of the optimized system 2 are about 232.08 g·(kW·h)^(–1)and 52.96%(100%turbine heat acceptance condition),respectively.展开更多
基金National Natural Science Foundation of China(No.60974119)
文摘Ultra-supercritical(USC) unit is more and more popular in coal-fired power industry.In this paper,closed-loop identification based on subspace model identification(SMI) is introduced for superheated steam temperature system of USC unit.Closed-loop SMI is applied to building step response model of the unit directly.The parameters selection method is proposed to deal with the parameter sensitivity and improve the reliability of the model.Finally,the model is used in model identification of real USC unit.
基金financially supported by National key research and development program of China(No.2017YFB0602101,2018YFB0604404)。
文摘700°C double reheat advanced ultra-supercritical power generation technology is one of the most important development directions for the efficient and clean utilization of coal.To solve the great exergy loss problem caused by the high superheat degrees of regenerative steam extractions in 700°C double reheat advanced ultra-supercritical power generation system,two optimization systems are proposed in this paper.System 1 is integrated with the back pressure extraction steam turbine,and system 2 is simultaneously integrated with both the outside steam cooler and back pressure extraction steam turbine.The system performance models are built by the Ebsilon Professional software.The performances of optimized systems are analyzed by the unit consumption method.The off-design performances of optimization systems are analyzed.The results show that:the standard power generation coal consumption rates of optimization systems 1 and 2 are decreased by 1.88 g·(kW·h)^(–1),2.97 g·(kW·h)^(–1)compared with that of the 700°C reference system;the average superheat degrees of regenerative steam extractions of optimized systems 1 and 2 are decreased by 122.2°C,140.7°C(100%turbine heat acceptance condition),respectively.The comparison results also show that the performance of the optimized system 2 is better than those of the optimized system 1 and the 700°C reference system.The power generation standard coal consumption rate and the power generation efficiency of the optimized system 2 are about 232.08 g·(kW·h)^(–1)and 52.96%(100%turbine heat acceptance condition),respectively.