ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensit...ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensity(UHI)ð>10^(22) W=cm^(2)) lasereplasma interaction.Recently the need for HED laboratory physics was identified and the P3(plasma physics platform)installation under construction in ELI-BL will be an answer.The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones,high-pressure quantum ones,warm dense matter(WDM)and ultra-relativistic plasmas.HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion(ICF).Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses.This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI,and gives a brief overview of some research under way in the field of UHI,laboratory astrophysics,ICF,WDM,and plasma optics.展开更多
We have experimentally improved the temporal contrast of the petawatt J-KAREN-P laser facility.We have investigated how the generation of pre-pulses by post-pulses changes due to the temporal overlap between the stret...We have experimentally improved the temporal contrast of the petawatt J-KAREN-P laser facility.We have investigated how the generation of pre-pulses by post-pulses changes due to the temporal overlap between the stretched pulse and the post-pulse in a chirped-pulse amplification system.We have shown that the time at which the pre-pulse is generated by the post-pulse and its shape are related to the time difference between the stretched main pulse and the post-pulse.With this investigation,we have found and identified the origins of the pre-pulses and have demonstrated the removal of most pre-pulses by eliminating the post-pulse with wedged optics.We have also demonstrated the impact of stretcher optics on the picosecond pedestal.We have realized orders of magnitude enhancement of the pedestal by improving the optical quality of a key component in the stretcher.展开更多
In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some ...In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some description of their uses,for instance in fundamental ultra-high-intensity interactions,secondary source generation,and inertial confinement fusion(ICF).With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification(CPA),which made these lasers possible,we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed.We are now in the era of multi-petawatt facilities coming online,with 100 PW lasers being proposed and even under construction.In addition to this there is a pull towards development of industrial and multi-disciplinary applications,which demands much higher repetition rates,delivering high-average powers with higher efficiencies and the use of alternative wavelengths:mid-IR facilities.So apart from a comprehensive update of the current global status,we want to look at what technologies are to be deployed to get to these new regimes,and some of the critical issues facing their development.展开更多
Interaction between high-intensity lasers with solid targets is the key process in a wide range of novel laser-based particle accelerator schemes,as well as electromagnetic radiation sources.Common to all the processe...Interaction between high-intensity lasers with solid targets is the key process in a wide range of novel laser-based particle accelerator schemes,as well as electromagnetic radiation sources.Common to all the processes is the generation of femtosecond pulses of relativistic electrons emitted from the targets as forerunners of the later-time principal products of the interaction scheme.In this paper,some diagnostics employed in laser–solid matter interaction experiments related to electrons,protons,ions,electromagnetic pulses(EMPs)and X-rays are reviewed.Then,we present our experimental study regarding fast electrons and EMPs utilizing a femtosecond-resolution detector previously adopted only in accelerator facilities.展开更多
基金The authors acknowledge support from the project ELI:Extreme Light Infrastructure from European Regional Devel-opment(CZ.02.1.01/0.0/0.0/15-008/0000162)Also supported by the project High Field Initiative(CZ.02.1.01/0.0/0.0/15-003/0000449)from European Regional Development Fund.
文摘ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensity(UHI)ð>10^(22) W=cm^(2)) lasereplasma interaction.Recently the need for HED laboratory physics was identified and the P3(plasma physics platform)installation under construction in ELI-BL will be an answer.The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones,high-pressure quantum ones,warm dense matter(WDM)and ultra-relativistic plasmas.HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion(ICF).Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses.This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI,and gives a brief overview of some research under way in the field of UHI,laboratory astrophysics,ICF,WDM,and plasma optics.
基金supported by JSPS KAKENHI Grant Number JP20H01882。
文摘We have experimentally improved the temporal contrast of the petawatt J-KAREN-P laser facility.We have investigated how the generation of pre-pulses by post-pulses changes due to the temporal overlap between the stretched pulse and the post-pulse in a chirped-pulse amplification system.We have shown that the time at which the pre-pulse is generated by the post-pulse and its shape are related to the time difference between the stretched main pulse and the post-pulse.With this investigation,we have found and identified the origins of the pre-pulses and have demonstrated the removal of most pre-pulses by eliminating the post-pulse with wedged optics.We have also demonstrated the impact of stretcher optics on the picosecond pedestal.We have realized orders of magnitude enhancement of the pedestal by improving the optical quality of a key component in the stretcher.
文摘In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some description of their uses,for instance in fundamental ultra-high-intensity interactions,secondary source generation,and inertial confinement fusion(ICF).With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification(CPA),which made these lasers possible,we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed.We are now in the era of multi-petawatt facilities coming online,with 100 PW lasers being proposed and even under construction.In addition to this there is a pull towards development of industrial and multi-disciplinary applications,which demands much higher repetition rates,delivering high-average powers with higher efficiencies and the use of alternative wavelengths:mid-IR facilities.So apart from a comprehensive update of the current global status,we want to look at what technologies are to be deployed to get to these new regimes,and some of the critical issues facing their development.
文摘Interaction between high-intensity lasers with solid targets is the key process in a wide range of novel laser-based particle accelerator schemes,as well as electromagnetic radiation sources.Common to all the processes is the generation of femtosecond pulses of relativistic electrons emitted from the targets as forerunners of the later-time principal products of the interaction scheme.In this paper,some diagnostics employed in laser–solid matter interaction experiments related to electrons,protons,ions,electromagnetic pulses(EMPs)and X-rays are reviewed.Then,we present our experimental study regarding fast electrons and EMPs utilizing a femtosecond-resolution detector previously adopted only in accelerator facilities.