期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
C/SiC喷管及其超高温抗氧化涂层烧蚀行为模拟研究 被引量:2
1
作者 白瑀 汤富领 +3 位作者 杨彦龙 薛红涛 曹生珠 张凯峰 《表面技术》 EI CAS CSCD 北大核心 2019年第11期305-311,共7页
目的提高C/SiC材料发动机喷管的高温抗烧蚀性能。方法基于质量、能量守恒和物性方程建立发动机喷管内燃气湍流模型,应用数值模拟方法计算喷管基体和各涂层的线烧蚀速率,并验证模型的准确性。通过比较不同种类涂层的抗烧蚀性能及涂层间... 目的提高C/SiC材料发动机喷管的高温抗烧蚀性能。方法基于质量、能量守恒和物性方程建立发动机喷管内燃气湍流模型,应用数值模拟方法计算喷管基体和各涂层的线烧蚀速率,并验证模型的准确性。通过比较不同种类涂层的抗烧蚀性能及涂层间匹配性,建立多元复合涂层体系,分析体系烧蚀行为及烧蚀机理,对HfO2-ZrC-SiC-C/SiC四元体系在不同温度下的线烧蚀速率进行计算。结果 Hf系、Zr系涂层抗氧化烧蚀性能优异,最大线烧蚀速率皆处于0.3~1.2μm/s之间。HfO2具有良好的抗烧蚀性能和自身稳定性。相较其他体系,HfO2-ZrC-SiC-C/SiC体系喷管的喉部及扩散段线烧蚀率更低。体系在7 MPa下,分别在1700、2100、2500、2900K计算了线烧蚀速率,最大线烧蚀速率区域产生了迁移现象,各温度梯度线烧蚀速率分别提高了174%、20.22%、18.04%。结论 HfO2能够有效地降低喷管收敛段的烧蚀速率,且适合作为复合涂层体系最外层。温度升高明显加剧了化学反应烧蚀和机械剥蚀,高温度下机械剥蚀是烧蚀的主要因素。 展开更多
关键词 超高温陶瓷涂层 烧蚀 C/SIC复合材料 发动机喷管 化学反应 数值模拟
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部