以风电为代表的新能源发电装机容量占比逐年增长,精确的风电功率超短期预测对提高风能利用率、助力双碳实现有重要意义。该文提出一种基于多元注意力框架与引导式监督学习的闭环风电功率超短期预测策略,从特征筛选、模型优化、策略改良...以风电为代表的新能源发电装机容量占比逐年增长,精确的风电功率超短期预测对提高风能利用率、助力双碳实现有重要意义。该文提出一种基于多元注意力框架与引导式监督学习的闭环风电功率超短期预测策略,从特征筛选、模型优化、策略改良3个角度全面提高预测准确性与模型智能性。首先,采用动态权重特征选择算法、孤立森林算法以及最邻近节点算法筛选并处理数据,便于预测模型更好把握其中特征;其次,对长短期记忆(long short term memory,LSTM)基模型多角度优化,并根据基模型中不同信息的特点,构建关于LSTM的多元注意力框架(Multielement-attention-LSTM),将此框架用于对LightGBM集成学习模型的引导,并通过多种可视化方法提高了模型可解释性;最后,将Bland-Altman应用于模型输出与实际风电出力一致性检验,在预测数据与实际数据交互的基础上实现训练–预测闭环机制。仿真结果表明,所构建的Multielement-attention-LSTM框架具有提高模型预测精度的作用,且闭环更新机制具备合理性。展开更多
准确可靠的风电功率预测对电力系统调度、风电场的效益和电网的安全稳定运行具有重要意义。为了提高超短期风电功率预测的准确性,提出了一种基于自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adapt...准确可靠的风电功率预测对电力系统调度、风电场的效益和电网的安全稳定运行具有重要意义。为了提高超短期风电功率预测的准确性,提出了一种基于自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和改进野狗优化算法(improved dog optimization algorithm,IDOA)优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的组合模型预测超短期风电功率方法。该方法先采用CEEMDAN分解方法将原始的数据分解来降低原始数据的复杂性和不稳定性,将分解后的所有序列进行偏自相关方法分析,选出重要性较大序列作为IDOA-BiLSTM模型的输入,最后通过IDOA-BiLSTM模型进行超短期风电功率预测。采用甘肃某风电场实测数据为数据集,进行训练模型和预测分析,结果表明所提出的超短期风电功率预测模型具有较高的预测精度,具备实际应用的可行性。展开更多
文摘以风电为代表的新能源发电装机容量占比逐年增长,精确的风电功率超短期预测对提高风能利用率、助力双碳实现有重要意义。该文提出一种基于多元注意力框架与引导式监督学习的闭环风电功率超短期预测策略,从特征筛选、模型优化、策略改良3个角度全面提高预测准确性与模型智能性。首先,采用动态权重特征选择算法、孤立森林算法以及最邻近节点算法筛选并处理数据,便于预测模型更好把握其中特征;其次,对长短期记忆(long short term memory,LSTM)基模型多角度优化,并根据基模型中不同信息的特点,构建关于LSTM的多元注意力框架(Multielement-attention-LSTM),将此框架用于对LightGBM集成学习模型的引导,并通过多种可视化方法提高了模型可解释性;最后,将Bland-Altman应用于模型输出与实际风电出力一致性检验,在预测数据与实际数据交互的基础上实现训练–预测闭环机制。仿真结果表明,所构建的Multielement-attention-LSTM框架具有提高模型预测精度的作用,且闭环更新机制具备合理性。
文摘准确可靠的风电功率预测对电力系统调度、风电场的效益和电网的安全稳定运行具有重要意义。为了提高超短期风电功率预测的准确性,提出了一种基于自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和改进野狗优化算法(improved dog optimization algorithm,IDOA)优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的组合模型预测超短期风电功率方法。该方法先采用CEEMDAN分解方法将原始的数据分解来降低原始数据的复杂性和不稳定性,将分解后的所有序列进行偏自相关方法分析,选出重要性较大序列作为IDOA-BiLSTM模型的输入,最后通过IDOA-BiLSTM模型进行超短期风电功率预测。采用甘肃某风电场实测数据为数据集,进行训练模型和预测分析,结果表明所提出的超短期风电功率预测模型具有较高的预测精度,具备实际应用的可行性。