期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
用于视网膜血管分割的半监督深度学习框架 被引量:2
1
作者 吕佳 刘耀文 《光电子.激光》 CAS CSCD 北大核心 2022年第11期1207-1214,共8页
针对目前视网膜血管分割任务中伪标签质量参差不齐,获得高质量的伪标签需要经过筛选的问题,本文提出了一种新的用于视网膜血管分割的半监督深度学习框架。该框架采用分而治之的思想来处理数据,针对有标签数据,采用传统的深度学习方法;... 针对目前视网膜血管分割任务中伪标签质量参差不齐,获得高质量的伪标签需要经过筛选的问题,本文提出了一种新的用于视网膜血管分割的半监督深度学习框架。该框架采用分而治之的思想来处理数据,针对有标签数据,采用传统的深度学习方法;针对无标签数据,采用Mean teacher模型,通过对比同一输入的不同形态输出,让模型学习无标签数据之间的共同特征,避免了采用伪标签技术带来的筛选过程。本文将U型网络(u-neural networks,U-Net)、Dense-Net和Ladder-Net 3个基准网络放入该框架,在DRIVE和CHASEDB1数据集上进行训练测试,均取得了较好的分割效果,表明本文框架具有提高网络区分不同阈值像素的能力。 展开更多
关键词 视网膜血管分割 半监督学习 u型网络(u-net) Mean teacher模型 伪标签
原文传递
基于改进U-Net的人脑黑质致密部分割 被引量:2
2
作者 曹加旺 田维维 +2 位作者 刘学玲 李郁欣 冯瑞 《计算机工程》 CAS CSCD 北大核心 2022年第11期14-21,29,共9页
人脑黑质致密部分割能够为帕金森病的诊断提供一定依据。黑质致密部在人脑核磁共振成像中像素占比低、类间差异小,为提高计算机辅助诊断系统对人脑黑质致密部的分割精度,提出一种基于改进U形神经网络(U-Net)的人脑黑质致密部分割方法。... 人脑黑质致密部分割能够为帕金森病的诊断提供一定依据。黑质致密部在人脑核磁共振成像中像素占比低、类间差异小,为提高计算机辅助诊断系统对人脑黑质致密部的分割精度,提出一种基于改进U形神经网络(U-Net)的人脑黑质致密部分割方法。为了提取更多有效的多尺度图像语义特征,结合U-Net的跨连接结构并采用多头注意力机制,同时融合基于Transformer编码器的高维语义编码模块以提取高维语义特征,避免浅层噪声对特征造成的影响。建立多任务模型并设计基于二维高斯核权重掩膜的损失函数,解决神经网络分割模型因多次下采样造成的不连续分割误差问题。构建包括140个帕金森病患者以及48个健康对照者的高精度核磁共振脑成像数据集进行实验,结果表明,相较常用的医疗影像分割方法 R2U-Net、HANet等,该方法的多任务分割效果取得明显提升,戴斯相关系数和AUC指标分别达到0.869 1和0.943 9,消融实验结果也验证了改进编码器和改进损失这2个模块的有效性。 展开更多
关键词 图像分割 帕金森病 黑质致密部 u形神经网络 Transformer模块 多任务学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部