针对双流网络对包含冗余信息的视频帧存在识别率低的问题,在双流网络的基础上引入scSE(Spatial and Channel Squeeze&Excitation Block)和非局部操作,构建SC_NLResNet行为识别框架。该框架将视频划分为等分不重叠的时序段并在每段...针对双流网络对包含冗余信息的视频帧存在识别率低的问题,在双流网络的基础上引入scSE(Spatial and Channel Squeeze&Excitation Block)和非局部操作,构建SC_NLResNet行为识别框架。该框架将视频划分为等分不重叠的时序段并在每段上稀疏采样,提取RGB帧以及光流图作为scSE模块的输入;将经过scSE处理的特征输入非局部双流ResNet网络中,融合各分段得到最终的预测结果。在UCF101以及Hmdb51数据集上实验准确率分别达到96.9%和76.2%,结果表明,非局部操作与scSE模块结合可以增强特征时空上以及通道间的信息提高准确率,验证了SC_NLResNet网络的有效性。展开更多
视频动作识别是计算机视觉领域一个十分具有挑战性的课题,主要任务是利用深度学习等视频智能分析技术识别的深层信息推导出视频人体行为动作。通过结合双流卷积神经网络和三维卷积神经网络的结构特点,提出了一种面向时空特征融合的GSTIN...视频动作识别是计算机视觉领域一个十分具有挑战性的课题,主要任务是利用深度学习等视频智能分析技术识别的深层信息推导出视频人体行为动作。通过结合双流卷积神经网络和三维卷积神经网络的结构特点,提出了一种面向时空特征融合的GSTIN(GoogLeNet based on spatio-temporal intergration network)。GSTIN中设计了时空特征融合模块InBST(inception blend spatio-temporal feature),提升网络对空间特征与时间特征的利用能力;在时空特征融合模块InBST基础上,构建了适合动作识别的多流网络结构。GSTIN在动作识别数据集UCF101、HMDB51上识别精度分别达到了93.8%和70.6%,这表明GSTIN与其他动作识别网络相比具有较好的识别性能。展开更多
文摘针对双流网络对包含冗余信息的视频帧存在识别率低的问题,在双流网络的基础上引入scSE(Spatial and Channel Squeeze&Excitation Block)和非局部操作,构建SC_NLResNet行为识别框架。该框架将视频划分为等分不重叠的时序段并在每段上稀疏采样,提取RGB帧以及光流图作为scSE模块的输入;将经过scSE处理的特征输入非局部双流ResNet网络中,融合各分段得到最终的预测结果。在UCF101以及Hmdb51数据集上实验准确率分别达到96.9%和76.2%,结果表明,非局部操作与scSE模块结合可以增强特征时空上以及通道间的信息提高准确率,验证了SC_NLResNet网络的有效性。
文摘视频动作识别是计算机视觉领域一个十分具有挑战性的课题,主要任务是利用深度学习等视频智能分析技术识别的深层信息推导出视频人体行为动作。通过结合双流卷积神经网络和三维卷积神经网络的结构特点,提出了一种面向时空特征融合的GSTIN(GoogLeNet based on spatio-temporal intergration network)。GSTIN中设计了时空特征融合模块InBST(inception blend spatio-temporal feature),提升网络对空间特征与时间特征的利用能力;在时空特征融合模块InBST基础上,构建了适合动作识别的多流网络结构。GSTIN在动作识别数据集UCF101、HMDB51上识别精度分别达到了93.8%和70.6%,这表明GSTIN与其他动作识别网络相比具有较好的识别性能。