期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向多峰优化问题的自主学习萤火虫算法 被引量:10
1
作者 赵嘉 陈文平 +1 位作者 肖人彬 王晖 《控制与决策》 EI CSCD 北大核心 2022年第8期1971-1980,共10页
萤火虫算法在处理多峰优化问题时易陷入局部最优,针对该问题提出一种自主学习萤火虫算法.该算法将粒子按适应度划为自主学习粒子和普通粒子,自主学习粒子从种群中随机选择一个粒子并随机选择一个维度,使用3种学习策略产生3个候选解,在... 萤火虫算法在处理多峰优化问题时易陷入局部最优,针对该问题提出一种自主学习萤火虫算法.该算法将粒子按适应度划为自主学习粒子和普通粒子,自主学习粒子从种群中随机选择一个粒子并随机选择一个维度,使用3种学习策略产生3个候选解,在自身以及候选解中选择最好的解;普通粒子同时选择两个优于自身的粒子进行学习.自主学习粒子能够维持算法对多个极值空间的探索并提高算法优化精度;普通粒子以两个粒子的混合信息为指引,使算法跳出局部最优.此外,使用淘汰机制,让算法舍弃对劣质极值空间的维护,进而提高对优质极值空间的开发,实验结果表明,所提出算法在处理多峰优化问题时具有高效的性能. 展开更多
关键词 萤火虫算法 多峰优化问题 自主学习 双样本学习 淘汰机制 局部最优
原文传递
基于双样本学习与单维搜索改进的精英麻雀搜索算法 被引量:1
2
作者 贾凯烨 董砚 《计算机科学》 CSCD 北大核心 2023年第2期317-323,共7页
针对麻雀搜索算法初始种群分布不均匀,种群间信息交流少,易陷入局部最优,收敛速度慢等不足,提出了一种基于双样本学习与单维搜索改进的精英麻雀搜索算法。首先,采用Hammersley低差异序列与反向学习相结合产生精英初始种群,增强个体质量... 针对麻雀搜索算法初始种群分布不均匀,种群间信息交流少,易陷入局部最优,收敛速度慢等不足,提出了一种基于双样本学习与单维搜索改进的精英麻雀搜索算法。首先,采用Hammersley低差异序列与反向学习相结合产生精英初始种群,增强个体质量和多样性;然后,通过双样本学习策略,改进追随者的位置更新公式,加强种群间的信息交流,提高算法跳出局部最优的能力;最后,在算法迭代后期采用单维搜索模式,增强算法在后期的深度挖掘能力,提高算法的精度。通过对时间复杂度进行分析,证明了该改进未增加算法的时间复杂度。选取12个不同特征的测试函数进行寻优,测试结果表明,与其他算法相比,该算法在收敛速度、精度和稳定性上都有明显的优越性。 展开更多
关键词 麻雀搜索算法 Hammersley低差异序列 反向学习 双样本学习 单维搜索
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部