Presents analytic criteria for the local activity theory in two-port cellularneural network (CNN) cells with four local state variables, and gives the application to a smoothedChua's circuit (SCC) CNN with two-por...Presents analytic criteria for the local activity theory in two-port cellularneural network (CNN) cells with four local state variables, and gives the application to a smoothedChua's circuit (SCC) CNN with two-port and I 5 S 15 arrays. The bifurcation diagrams of the SCC CNNshow that they are completely the same as those of an SCC CNN with one-port calculated earlier;which do not exist locally passive domain. The evolution of the patterns of the state variables ofthe SCC CNN is stimulated. Oscillatory patterns, chaotic patterns, or divergent patterns may emergeif the selected cell parameters are located in the locally active unstable domains but nearby theedge of chaos domain.展开更多
基金This project is jointly supported by the National Nature Science Foundation of China (Grant No. 60074034) and the Foundation for
文摘Presents analytic criteria for the local activity theory in two-port cellularneural network (CNN) cells with four local state variables, and gives the application to a smoothedChua's circuit (SCC) CNN with two-port and I 5 S 15 arrays. The bifurcation diagrams of the SCC CNNshow that they are completely the same as those of an SCC CNN with one-port calculated earlier;which do not exist locally passive domain. The evolution of the patterns of the state variables ofthe SCC CNN is stimulated. Oscillatory patterns, chaotic patterns, or divergent patterns may emergeif the selected cell parameters are located in the locally active unstable domains but nearby theedge of chaos domain.