Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross-section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main co...Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross-section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Eulerian-Lagrangian approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.展开更多
Study on gas–liquid flow in stirred tank with two combinations of dual-impeller(six-bent-bladed turbine(6BT)+six-inclined-blade down-pumping turbine(6 ITD),the six-bent-bladed turbine(6BT)+six-inclinedblade up-pumpin...Study on gas–liquid flow in stirred tank with two combinations of dual-impeller(six-bent-bladed turbine(6BT)+six-inclined-blade down-pumping turbine(6 ITD),the six-bent-bladed turbine(6BT)+six-inclinedblade up-pumping turbine(6ITU))was conducted using computational fluid dynamics(CFD)and population balance model(PBM)(CFD-PBM)coupled model.The local bubble size was captured by particle image velocimetry(PIV)measurement.The gas holdup,bubble size distribution and gas–liquid interfacial area were explored at different conditions through numerical simulation.The results showed that the 4 mm bubbles accounted for the largest proportion of 33%at the gas flow rates Q=0.76 m^(3)·h^(-1) and 22%at Q=1.52 m^(3)·h^(-1) for combined impeller of 6BT+6ITU,while the bubbles of 4.7 mm and 5.5 mm were the largest proportion for 6BT+6ITD combination,i.e.25%at Q=0.76 m^(3)·h^(-1) and 22%at Q=1.52 m^(3)·h^(-1),respectively,which indicated that 6BT+6ITU could reduce bubble size effectively and promote gas dispersion.In addition,the gas holdup around impellers was increased obviously with the speed compared with gas flow rate.So it was concluded that 6ITU impeller could be more conductive to the bubble dispersion with more uniform bubble size,which embodied the advantages of 6BT+6ITU combination in gas–liquid mixing.展开更多
基金Supported by the National Natural Science Foundation of China(N.59831030).
文摘Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross-section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Eulerian-Lagrangian approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.
基金supported by the National Natural Science Foundation of China(52176040)Shandong Provincial Natural Science Foundation of China(ZR2018LE015)。
文摘Study on gas–liquid flow in stirred tank with two combinations of dual-impeller(six-bent-bladed turbine(6BT)+six-inclined-blade down-pumping turbine(6 ITD),the six-bent-bladed turbine(6BT)+six-inclinedblade up-pumping turbine(6ITU))was conducted using computational fluid dynamics(CFD)and population balance model(PBM)(CFD-PBM)coupled model.The local bubble size was captured by particle image velocimetry(PIV)measurement.The gas holdup,bubble size distribution and gas–liquid interfacial area were explored at different conditions through numerical simulation.The results showed that the 4 mm bubbles accounted for the largest proportion of 33%at the gas flow rates Q=0.76 m^(3)·h^(-1) and 22%at Q=1.52 m^(3)·h^(-1) for combined impeller of 6BT+6ITU,while the bubbles of 4.7 mm and 5.5 mm were the largest proportion for 6BT+6ITD combination,i.e.25%at Q=0.76 m^(3)·h^(-1) and 22%at Q=1.52 m^(3)·h^(-1),respectively,which indicated that 6BT+6ITU could reduce bubble size effectively and promote gas dispersion.In addition,the gas holdup around impellers was increased obviously with the speed compared with gas flow rate.So it was concluded that 6ITU impeller could be more conductive to the bubble dispersion with more uniform bubble size,which embodied the advantages of 6BT+6ITU combination in gas–liquid mixing.