在线学习时长是强化学习算法的一个重要指标.传统在线强化学习算法如Q学习、状态–动作–奖励–状态–动作(state-action-reward-state-action,SARSA)等算法不能从理论分析角度给出定量的在线学习时长上界.本文引入概率近似正确(probabl...在线学习时长是强化学习算法的一个重要指标.传统在线强化学习算法如Q学习、状态–动作–奖励–状态–动作(state-action-reward-state-action,SARSA)等算法不能从理论分析角度给出定量的在线学习时长上界.本文引入概率近似正确(probably approximately correct,PAC)原理,为连续时间确定性系统设计基于数据的在线强化学习算法.这类算法有效记录在线数据,同时考虑强化学习算法对状态空间探索的需求,能够在有限在线学习时间内输出近似最优的控制.我们提出算法的两种实现方式,分别使用状态离散化和kd树(k-dimensional树)技术,存储数据和计算在线策略.最后我们将提出的两个算法应用在双连杆机械臂运动控制上,观察算法的效果并进行比较.展开更多
A neuro-fuzzy system model based on automatic fuzzy dustering is proposed. A hybrid model identification algorithm is also developed to decide the model structure and model parameters. The algorithm mainly includes th...A neuro-fuzzy system model based on automatic fuzzy dustering is proposed. A hybrid model identification algorithm is also developed to decide the model structure and model parameters. The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM), which is applied to generate fuzzy rttles automatically, and then fix on the size of the neuro-fuzzy network, by which the complexity of system design is reducesd greatly at the price of the fitting capability; 2) R.ecursive least square estimation (RLSE). It is used to update the parameters of Takagi-Sugeno model, which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network. Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.展开更多
文摘在线学习时长是强化学习算法的一个重要指标.传统在线强化学习算法如Q学习、状态–动作–奖励–状态–动作(state-action-reward-state-action,SARSA)等算法不能从理论分析角度给出定量的在线学习时长上界.本文引入概率近似正确(probably approximately correct,PAC)原理,为连续时间确定性系统设计基于数据的在线强化学习算法.这类算法有效记录在线数据,同时考虑强化学习算法对状态空间探索的需求,能够在有限在线学习时间内输出近似最优的控制.我们提出算法的两种实现方式,分别使用状态离散化和kd树(k-dimensional树)技术,存储数据和计算在线策略.最后我们将提出的两个算法应用在双连杆机械臂运动控制上,观察算法的效果并进行比较.
文摘A neuro-fuzzy system model based on automatic fuzzy dustering is proposed. A hybrid model identification algorithm is also developed to decide the model structure and model parameters. The algorithm mainly includes three parts:1) Automatic fuzzy C-means (AFCM), which is applied to generate fuzzy rttles automatically, and then fix on the size of the neuro-fuzzy network, by which the complexity of system design is reducesd greatly at the price of the fitting capability; 2) R.ecursive least square estimation (RLSE). It is used to update the parameters of Takagi-Sugeno model, which is employed to describe the behavior of the system;3) Gradient descent algorithm is also proposed for the fuzzy values according to the back propagation algorithm of neural network. Finally,modeling the dynamical equation of the two-link manipulator with the proposed approach is illustrated to validate the feasibility of the method.