We have investigated the effect of cohesion and drag models on the bed hydrodynamics of Geldart A particles based on the two-fluid (TF) model. For a high gas velocity U0 = 0.03 m/s, we found a transition from the ho...We have investigated the effect of cohesion and drag models on the bed hydrodynamics of Geldart A particles based on the two-fluid (TF) model. For a high gas velocity U0 = 0.03 m/s, we found a transition from the homogeneous fluidization to bubbling fluidization with an increase of the coefficient C1, which is used to account for the contribution of cohesion to the excess compressibility. Thus cohesion can play a role in the bed expansion of Geldart A particles. Apart from cohesion, we have also investigated the influence of the drag models. When using the Wen and Yu drag correlation with an exponent n = 4.65, we find an under-prediction of the bed expansion at low gas velocities (U0 = 0.009 m/s). When using a larger exponent (n = 9.6), as reported in experimental studies of gas-fluidization, a much better agreement with the experimental bed expansion is obtained. These findings suggest that at low gas velocity, a scale-down of the commonly used drag model is required. On the other hand, a scale-up of the commonly used drag model is necessary at high gas velocity (U0 = 0.2 and 0.06 m/s). We therefore conclude that scaling the drag force represent only an ad hoc way of repairing the deficiencies of the TF model, and that a far more detailed study is required into the origin of the failure of the TF model for simulating fluidized beds of fine powders.展开更多
Cavitating flows inside a diesel injection nozzle hole were simulated using a two-fluid model. Attention was focused on the complex cavitation processes and flow characteristics under constant inlet pressure and fluct...Cavitating flows inside a diesel injection nozzle hole were simulated using a two-fluid model. Attention was focused on the complex cavitation processes and flow characteristics under constant inlet pressure and fluctuant inlet pressure modes. To validate the two-fluid model, model predictions were compared with the experimental data available in the literatures, and good agreement was achieved. The numerical results show that the appearance of supercavitation in the diesel nozzle hole induces obvious changes of flow field structures and exit flow conditions. The distributions of liquid phase turbulent kinetic energy and exit velocity profiles corresponding to the supercavitation regime indicate the potential for promoting the primary breakup of a diesel jet. Furthermore, the upstream pressure fluctuations significantly influence the cavitation processes. Both partial cavitation and supercavitation show unsteady behaviors as the rapid rise or fall of upstream pressure.展开更多
文摘We have investigated the effect of cohesion and drag models on the bed hydrodynamics of Geldart A particles based on the two-fluid (TF) model. For a high gas velocity U0 = 0.03 m/s, we found a transition from the homogeneous fluidization to bubbling fluidization with an increase of the coefficient C1, which is used to account for the contribution of cohesion to the excess compressibility. Thus cohesion can play a role in the bed expansion of Geldart A particles. Apart from cohesion, we have also investigated the influence of the drag models. When using the Wen and Yu drag correlation with an exponent n = 4.65, we find an under-prediction of the bed expansion at low gas velocities (U0 = 0.009 m/s). When using a larger exponent (n = 9.6), as reported in experimental studies of gas-fluidization, a much better agreement with the experimental bed expansion is obtained. These findings suggest that at low gas velocity, a scale-down of the commonly used drag model is required. On the other hand, a scale-up of the commonly used drag model is necessary at high gas velocity (U0 = 0.2 and 0.06 m/s). We therefore conclude that scaling the drag force represent only an ad hoc way of repairing the deficiencies of the TF model, and that a far more detailed study is required into the origin of the failure of the TF model for simulating fluidized beds of fine powders.
基金Supported by the National Natural Science Foundation of China, Key Project Fund-ing (Grant No. 50636040)Major State Basic Research Development Program (Grant No. 2007CB210001)
文摘Cavitating flows inside a diesel injection nozzle hole were simulated using a two-fluid model. Attention was focused on the complex cavitation processes and flow characteristics under constant inlet pressure and fluctuant inlet pressure modes. To validate the two-fluid model, model predictions were compared with the experimental data available in the literatures, and good agreement was achieved. The numerical results show that the appearance of supercavitation in the diesel nozzle hole induces obvious changes of flow field structures and exit flow conditions. The distributions of liquid phase turbulent kinetic energy and exit velocity profiles corresponding to the supercavitation regime indicate the potential for promoting the primary breakup of a diesel jet. Furthermore, the upstream pressure fluctuations significantly influence the cavitation processes. Both partial cavitation and supercavitation show unsteady behaviors as the rapid rise or fall of upstream pressure.