We report a large-scale, high-quality heterostructure composed of vertically-stacked graphene and two-dimensional(2D) germanium.The heterostructure is constructed by the intercalation-assisted technique.We first synth...We report a large-scale, high-quality heterostructure composed of vertically-stacked graphene and two-dimensional(2D) germanium.The heterostructure is constructed by the intercalation-assisted technique.We first synthesize large-scale,single-crystalline graphene on Ir(111) surface and then intercalate germanium at the interface of graphene and Ir(111).The intercalated germanium forms a well-defined 2D layer with a 2 × 2 superstructure with respect to Ir(111).Theoretical calculations demonstrate that the 2D germanium has a double-layer structure.Raman characterizations show that the 2D germanium effectively weakens the interaction between graphene and Ir substrate, making graphene more like the intrinsic one.Further experiments of low-energy electron diffraction, scanning tunneling microscopy, and x-ray photoelectron spectroscopy(XPS) confirm the formation of large-scale and high-quality graphene/2D-germanium vertical heterostructure.The integration of graphene with a traditional 2D semiconductor provides a platform to explore new physical phenomena in the future.展开更多
基金Project supported by the National Key Research&Development Program of China(Grant Nos.2016YFA0202300 and 2018YFA0305800)the National Natural Science Foundation of China(Grant Nos.61390501,61888102,and 51872284)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDB30000000 and XDB28000000)Beijing Nova Program,China(Grant No.Z181100006218023)the University of Chinese Academy of Sciences
文摘We report a large-scale, high-quality heterostructure composed of vertically-stacked graphene and two-dimensional(2D) germanium.The heterostructure is constructed by the intercalation-assisted technique.We first synthesize large-scale,single-crystalline graphene on Ir(111) surface and then intercalate germanium at the interface of graphene and Ir(111).The intercalated germanium forms a well-defined 2D layer with a 2 × 2 superstructure with respect to Ir(111).Theoretical calculations demonstrate that the 2D germanium has a double-layer structure.Raman characterizations show that the 2D germanium effectively weakens the interaction between graphene and Ir substrate, making graphene more like the intrinsic one.Further experiments of low-energy electron diffraction, scanning tunneling microscopy, and x-ray photoelectron spectroscopy(XPS) confirm the formation of large-scale and high-quality graphene/2D-germanium vertical heterostructure.The integration of graphene with a traditional 2D semiconductor provides a platform to explore new physical phenomena in the future.