Two-dimensional (2D) van der Waals (vdWs) metal-semiconductor heterostructures with atomically sharp interface and matched work functions have recently attracted great attention due to their unique electronic and opto...Two-dimensional (2D) van der Waals (vdWs) metal-semiconductor heterostructures with atomically sharp interface and matched work functions have recently attracted great attention due to their unique electronic and optoelectronic properties. Here we report the vapor phase epitaxial growth of large-scale vertical Sb/WSe2 metal-semiconductor vdWs heterostructures with uniform stacking orientation. Compared with the growth on S1O2/S1 substrate, the thick ness of Sb nan osheet on WSe2 can be reduced effectively to mono layer. We con struct Sb-WSe2-Au asymmetric electrodes photodiode based on the Sb/WSe2 heterostructures. Electrical transport measurements indicate that the photodiode show obvious rectifying effect. Optoelectronic characterizations show prominent photoresponse with a high photoresposivity of 364 mA/W, a fast response time of less than 8 ms, a large open-circuit voltage of 0.27 V and a maximum electrical power output of 0.11 nW. The direct growth of high-quality metal-semiconductor vdWs heterostructures may open up new realms in 2D functional electronics and optoelectronics.展开更多
Fe-based phosphates with excellent physical and chemical features are potential electrode materials for supercapacitors.In this work,we successfully synthesized Fe-based phosphates with different dimensions,morphologi...Fe-based phosphates with excellent physical and chemical features are potential electrode materials for supercapacitors.In this work,we successfully synthesized Fe-based phosphates with different dimensions,morphologies,and compositions by one-step hydrothermal method.Influence factors on the chemical composition and morphology of the as-prepared materials were explored and the energy storage performance of the as-prepared samples were tested under the traditional three electrode system.Two-dimensional(2 D) iron metaphosphate(Fe(PO3)3) showed the best electrochemical performance.For Fe(PO3)3 electrode mate rials,the layered structure can provide a larger specific surface area than the bulk structure,which is conducive to the diffusion and transport of electrolyte ions during charging-discha rging and further improve s the rate perfo rmance and cycle stability of supe rcapacito r.2 D Fe(PO3)3 and activated carbon were used as electrode materials to construct a 2 D Fe(PO3)3//AC supercapacitor.The supercapacitor showed high energy density,high power density,and excellent cycling stability,which indicates 2 D Fe(PO3)3 is a promising electrode material for supercapacitors.展开更多
Chemically robust conductive p-type boron-doped diamond (BDD) films are an important electrode material and have been widely applied in electrochemistry. In this study, BDD films are taken as a two-dimensional (2D...Chemically robust conductive p-type boron-doped diamond (BDD) films are an important electrode material and have been widely applied in electrochemistry. In this study, BDD films are taken as a two-dimensional (2D) electrode in a eleetrophoresis tank system instead of the conventional one-dimensional platinum wire electrode. The theoretical simulations by finite element numerical analysis reveal that the 2D BDD electrodes have relatively high intensity and uniformity of electric field in the tank. Experimentally, the 2D BDD electrodes with smaller size show excellent properties for the separation of DNA fragments. The advantages of the 2D BDD electrodes with chemical inertness, sustainability, high intensity and uniformity electronic field, as well as reduced small size of electrophoresis tank would open a possibility for realizing new generation, high-performance biological devices.展开更多
基金the National Natural Science Foundation of China (Nos. 61804050 and 51872086)the Double First-Class Initiative of Hunan University (No. 531109100004)the Fundamental Research Funds of the Central Universities (Nos. 531107051078 and 531107051055).
文摘Two-dimensional (2D) van der Waals (vdWs) metal-semiconductor heterostructures with atomically sharp interface and matched work functions have recently attracted great attention due to their unique electronic and optoelectronic properties. Here we report the vapor phase epitaxial growth of large-scale vertical Sb/WSe2 metal-semiconductor vdWs heterostructures with uniform stacking orientation. Compared with the growth on S1O2/S1 substrate, the thick ness of Sb nan osheet on WSe2 can be reduced effectively to mono layer. We con struct Sb-WSe2-Au asymmetric electrodes photodiode based on the Sb/WSe2 heterostructures. Electrical transport measurements indicate that the photodiode show obvious rectifying effect. Optoelectronic characterizations show prominent photoresponse with a high photoresposivity of 364 mA/W, a fast response time of less than 8 ms, a large open-circuit voltage of 0.27 V and a maximum electrical power output of 0.11 nW. The direct growth of high-quality metal-semiconductor vdWs heterostructures may open up new realms in 2D functional electronics and optoelectronics.
基金supported by the National Natural Science Foundation of China (NSFC,Nos.21673203,21671170,U1904215)Natural Science Foundation of Jiangsu Province (No.BK20190870)+3 种基金the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP)Postgraduate Research & Practice Innovation Program of Jiangsu Province (No.XKYCX17032)Program for Young Changjiang Scholars of the Ministry of Education,Chinathe Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Fe-based phosphates with excellent physical and chemical features are potential electrode materials for supercapacitors.In this work,we successfully synthesized Fe-based phosphates with different dimensions,morphologies,and compositions by one-step hydrothermal method.Influence factors on the chemical composition and morphology of the as-prepared materials were explored and the energy storage performance of the as-prepared samples were tested under the traditional three electrode system.Two-dimensional(2 D) iron metaphosphate(Fe(PO3)3) showed the best electrochemical performance.For Fe(PO3)3 electrode mate rials,the layered structure can provide a larger specific surface area than the bulk structure,which is conducive to the diffusion and transport of electrolyte ions during charging-discha rging and further improve s the rate perfo rmance and cycle stability of supe rcapacito r.2 D Fe(PO3)3 and activated carbon were used as electrode materials to construct a 2 D Fe(PO3)3//AC supercapacitor.The supercapacitor showed high energy density,high power density,and excellent cycling stability,which indicates 2 D Fe(PO3)3 is a promising electrode material for supercapacitors.
基金Supported by the National Natural Science Foundation of China under Grant No 51472105the Key Program in Science and Technology of Jilin Province under Grant No 20150204062GX
文摘Chemically robust conductive p-type boron-doped diamond (BDD) films are an important electrode material and have been widely applied in electrochemistry. In this study, BDD films are taken as a two-dimensional (2D) electrode in a eleetrophoresis tank system instead of the conventional one-dimensional platinum wire electrode. The theoretical simulations by finite element numerical analysis reveal that the 2D BDD electrodes have relatively high intensity and uniformity of electric field in the tank. Experimentally, the 2D BDD electrodes with smaller size show excellent properties for the separation of DNA fragments. The advantages of the 2D BDD electrodes with chemical inertness, sustainability, high intensity and uniformity electronic field, as well as reduced small size of electrophoresis tank would open a possibility for realizing new generation, high-performance biological devices.