We study the spontaneous symmetry breaking of dipolar Bose-Einstein condensates trapped in stacks of two-well systems, which may be effectively built as one-dimensional trapping lattices sliced by a repelling laser sh...We study the spontaneous symmetry breaking of dipolar Bose-Einstein condensates trapped in stacks of two-well systems, which may be effectively built as one-dimensional trapping lattices sliced by a repelling laser sheet. If the potential wells are sufficiently deep, the system is modeled by coupled discrete Gross-Pitaevskii equations with nonlocal self- and cross-interaction terms representing dipole-dipole interactions. When the dipoles are not polarized perpendicular or parallel to the lattice, the cross- interaction is asymmetric, replacing the familiar symmetric two-component solitons with a new species of cross-symmetric or -asymmetric ones. The orientation of the dipole moments and the interwell hopping rate strongly affect the shapes of the discrete two-component solitons as well as the characteristics of the cross-symmetry breaking and the associated phase transition. The sub- and super-critical types of cross-symmetry breaking can be controlled by either the hopping rate between the components or the total norm of the solitons. The effect of the interplay between the contact nonlinearity and the dipole angle on the cross-symmetry breaking is also discussed.展开更多
Two-component systems are signal transduction systems which enable bacteria to regulate cellular functions in response to changing environmental conditions. The unicellular Synechocystis sp. PCC 6803 has become a mode...Two-component systems are signal transduction systems which enable bacteria to regulate cellular functions in response to changing environmental conditions. The unicellular Synechocystis sp. PCC 6803 has become a model organism for a range of biochemical and molecular biology studies aiming at investigating environmental stress response. The publication of the complete genome sequence of the cyanobacterium Synechocystis sp. PCC 6803 provided a tremendous stimulus for research in this field, and at least 80 open reading frames were identified as members of the two-component signal transduction systems in this single species of cyanobacteria. To date, functional roles have been determined for only a limited number of such proteins. This review summarizes our current knowledge about the two-component signal transduction systems in Synechocystis sp. PCC 6803 and describes recent achievements in elucidating the functional roles of these systems.展开更多
[目的]分析解淀粉芽孢杆菌(Bacillus amyloliquefaciens)双组分信号转导系统(Two-Component Signal Transduction System,TCS)的结构、功能和分布,为挖掘解淀粉芽孢杆菌的生物功能、开发其商业价值提供理论依据。[方法]采用生物信息学方...[目的]分析解淀粉芽孢杆菌(Bacillus amyloliquefaciens)双组分信号转导系统(Two-Component Signal Transduction System,TCS)的结构、功能和分布,为挖掘解淀粉芽孢杆菌的生物功能、开发其商业价值提供理论依据。[方法]采用生物信息学方法,系统分析了由笔者实验室分离得到并完成全基因组测序的解淀粉芽孢杆菌Q426的TCS。[结果]Q426菌株所携带的HKs和RRs分别为42和40,其中成对的TCS(HK-RR)数为19,杂合的TCS(Hybrid)为1,而HKs和RRs分别为22和20,并对19对TCS中15对的生物学功能做出预测。[结论]Q426菌株的TCS涉及杆菌肽、羊毛硫抗生素和多种抗菌肽的合成,为深入研究解淀粉芽孢杆菌抗菌活性物质的合成与调控提供思路。展开更多
基金Acknowledgements Tile authors appreciate the very useful discussion with Prof. Boris A. Malomed. This work was supported by the National Natural Science Foundation of China under Grant Nos. 11575063, 61471123, and 61575041, and the Natural Science Foundation of Guangdong Province under Grant No. 2015A030313639.
文摘We study the spontaneous symmetry breaking of dipolar Bose-Einstein condensates trapped in stacks of two-well systems, which may be effectively built as one-dimensional trapping lattices sliced by a repelling laser sheet. If the potential wells are sufficiently deep, the system is modeled by coupled discrete Gross-Pitaevskii equations with nonlocal self- and cross-interaction terms representing dipole-dipole interactions. When the dipoles are not polarized perpendicular or parallel to the lattice, the cross- interaction is asymmetric, replacing the familiar symmetric two-component solitons with a new species of cross-symmetric or -asymmetric ones. The orientation of the dipole moments and the interwell hopping rate strongly affect the shapes of the discrete two-component solitons as well as the characteristics of the cross-symmetry breaking and the associated phase transition. The sub- and super-critical types of cross-symmetry breaking can be controlled by either the hopping rate between the components or the total norm of the solitons. The effect of the interplay between the contact nonlinearity and the dipole angle on the cross-symmetry breaking is also discussed.
基金Supported by the National Natural Science Foundation of China (Nos. 40272054 and 40332022) and Research Grant of Doctoral Program for High Institue to Q. Wu
文摘Two-component systems are signal transduction systems which enable bacteria to regulate cellular functions in response to changing environmental conditions. The unicellular Synechocystis sp. PCC 6803 has become a model organism for a range of biochemical and molecular biology studies aiming at investigating environmental stress response. The publication of the complete genome sequence of the cyanobacterium Synechocystis sp. PCC 6803 provided a tremendous stimulus for research in this field, and at least 80 open reading frames were identified as members of the two-component signal transduction systems in this single species of cyanobacteria. To date, functional roles have been determined for only a limited number of such proteins. This review summarizes our current knowledge about the two-component signal transduction systems in Synechocystis sp. PCC 6803 and describes recent achievements in elucidating the functional roles of these systems.
文摘[目的]分析解淀粉芽孢杆菌(Bacillus amyloliquefaciens)双组分信号转导系统(Two-Component Signal Transduction System,TCS)的结构、功能和分布,为挖掘解淀粉芽孢杆菌的生物功能、开发其商业价值提供理论依据。[方法]采用生物信息学方法,系统分析了由笔者实验室分离得到并完成全基因组测序的解淀粉芽孢杆菌Q426的TCS。[结果]Q426菌株所携带的HKs和RRs分别为42和40,其中成对的TCS(HK-RR)数为19,杂合的TCS(Hybrid)为1,而HKs和RRs分别为22和20,并对19对TCS中15对的生物学功能做出预测。[结论]Q426菌株的TCS涉及杆菌肽、羊毛硫抗生素和多种抗菌肽的合成,为深入研究解淀粉芽孢杆菌抗菌活性物质的合成与调控提供思路。