This work concentrates on simultaneous move non-cooperating quantum games. Part of it is evidently not new, but it is included for the sake self consistence, as it is devoted to introduction of the mathematical and ph...This work concentrates on simultaneous move non-cooperating quantum games. Part of it is evidently not new, but it is included for the sake self consistence, as it is devoted to introduction of the mathematical and physical grounds of the pertinent topics, and the way in which a simple classical game is modified to become a quantum game (a procedure referred to as a quantization of a classical game). The connection between game theory and information science is briefly stressed, and the role of quantum entanglement (that plays a central role in the theory of quantum games), is exposed. Armed with these tools, we investigate some basic concepts like the existence (or absence) of a pure strategy and mixed strategy Nash equilibrium and its relation with the degree of entanglement. The main results of this work are as follows: 1) Construction of a numerical algorithm based on the method of best response functions, designed to search for pure strategy Nash equilibrium in quantum games. The formalism is based on the discretization of a continuous variable into a mesh of points, and can be applied to quantum games that are built upon two-players two-strategies classical games, based on the method of best response functions. 2) Application of this algorithm to study the question of how the existence of pure strategy Nash equilibrium is related to the degree of entanglement (specified by a continuous parameter γ ). It is shown that when the classical game G<sub>C</sub> has a pure strategy Nash equilibrium that is not Pareto efficient, then the quantum game G<sub>Q</sub> with maximal entanglement (γ = π/2) has no pure strategy Nash equilibrium. By studying a non-symmetric prisoner dilemma game, it is found that there is a critical value 0γ<sub>c</sub> such that for γγ<sub>c</sub> there is a pure strategy Nash equilibrium and for γ≥γ<sub>c </sub>there is no pure strategy Nash equilibrium. The behavior of the two payoffs as function of γ starts at that of the classical ones at (D, D) and approaches the cooperativ展开更多
文摘This work concentrates on simultaneous move non-cooperating quantum games. Part of it is evidently not new, but it is included for the sake self consistence, as it is devoted to introduction of the mathematical and physical grounds of the pertinent topics, and the way in which a simple classical game is modified to become a quantum game (a procedure referred to as a quantization of a classical game). The connection between game theory and information science is briefly stressed, and the role of quantum entanglement (that plays a central role in the theory of quantum games), is exposed. Armed with these tools, we investigate some basic concepts like the existence (or absence) of a pure strategy and mixed strategy Nash equilibrium and its relation with the degree of entanglement. The main results of this work are as follows: 1) Construction of a numerical algorithm based on the method of best response functions, designed to search for pure strategy Nash equilibrium in quantum games. The formalism is based on the discretization of a continuous variable into a mesh of points, and can be applied to quantum games that are built upon two-players two-strategies classical games, based on the method of best response functions. 2) Application of this algorithm to study the question of how the existence of pure strategy Nash equilibrium is related to the degree of entanglement (specified by a continuous parameter γ ). It is shown that when the classical game G<sub>C</sub> has a pure strategy Nash equilibrium that is not Pareto efficient, then the quantum game G<sub>Q</sub> with maximal entanglement (γ = π/2) has no pure strategy Nash equilibrium. By studying a non-symmetric prisoner dilemma game, it is found that there is a critical value 0γ<sub>c</sub> such that for γγ<sub>c</sub> there is a pure strategy Nash equilibrium and for γ≥γ<sub>c </sub>there is no pure strategy Nash equilibrium. The behavior of the two payoffs as function of γ starts at that of the classical ones at (D, D) and approaches the cooperativ