The numerical investigation of regular waves interacting with a submerged horizontal twin-plate breakwater is pre- sented in this paper. A numerical model with an absorbing wave-maker is established based on the VOF m...The numerical investigation of regular waves interacting with a submerged horizontal twin-plate breakwater is pre- sented in this paper. A numerical model with an absorbing wave-maker is established based on the VOF method. The validity of the model is verified by experimental results. Comparisons between the numerical and experimental results show that beth the water surface profiles and the wave-induced pressures can be modeled accurately. Wave deformation over the breakwater, water particle velocities around the breakwater, and the wave-induced pressures on the structure are nu- merically investigated. Tile pressure amplitudes of the fundamental and second harmonies on the model surface are exanl- ined in various water depths. The computed and experimental results have revealed that the higher frequency components are generated at the onshore side of the breakwater. Furthermore, the computed results demonstrate a circulating flow formed at the onshore side of the breakwater.展开更多
In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate wid...In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate width B/L,wave height Hs/D and incident angle θ0 on the wave forces were analyzed and discussed. The results showed that:(1) The envelopes of the total wave pressure were generally symmetrical along the direction of plate width under the incident angles(θ0) being 0°, 15°, 30°, 45° and 60°. In particular, the envelopes of wave pressure atθ0=30° were larger than all other cases.(2) The synchronous pressure distribution of the breakwater under oblique wave action was more complicated comparing to the normal incident waves.(3) Based on data analysis, an empirical formula was obtained to estimate the total vertical force of the twin-plate breakwater.This empirical formula can be a good reference for the design basis of engineering applications under specified wave conditions.展开更多
基金supported by the National Natural Science Foundation of China ( Grant Nos .50921001 and 51079025)
文摘The numerical investigation of regular waves interacting with a submerged horizontal twin-plate breakwater is pre- sented in this paper. A numerical model with an absorbing wave-maker is established based on the VOF method. The validity of the model is verified by experimental results. Comparisons between the numerical and experimental results show that beth the water surface profiles and the wave-induced pressures can be modeled accurately. Wave deformation over the breakwater, water particle velocities around the breakwater, and the wave-induced pressures on the structure are nu- merically investigated. Tile pressure amplitudes of the fundamental and second harmonies on the model surface are exanl- ined in various water depths. The computed and experimental results have revealed that the higher frequency components are generated at the onshore side of the breakwater. Furthermore, the computed results demonstrate a circulating flow formed at the onshore side of the breakwater.
基金The National Natural Science Foundation of China under contract Nos 51079025 and 11272079the Research Funds from State Key Laboratory of Coastal and Offshore Engineering under contract No.LY1602
文摘In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate width B/L,wave height Hs/D and incident angle θ0 on the wave forces were analyzed and discussed. The results showed that:(1) The envelopes of the total wave pressure were generally symmetrical along the direction of plate width under the incident angles(θ0) being 0°, 15°, 30°, 45° and 60°. In particular, the envelopes of wave pressure atθ0=30° were larger than all other cases.(2) The synchronous pressure distribution of the breakwater under oblique wave action was more complicated comparing to the normal incident waves.(3) Based on data analysis, an empirical formula was obtained to estimate the total vertical force of the twin-plate breakwater.This empirical formula can be a good reference for the design basis of engineering applications under specified wave conditions.