孪生支持向量机(twin support vector machine,TWSVM)是在支持向量机的基础上产生的机器学习算法,具有训练速度快、分类性能优越等优点。但是孪生支持向量机无法很好地处理参数选择问题,不合适的参数会降低分类能力。人工鱼群算法(artif...孪生支持向量机(twin support vector machine,TWSVM)是在支持向量机的基础上产生的机器学习算法,具有训练速度快、分类性能优越等优点。但是孪生支持向量机无法很好地处理参数选择问题,不合适的参数会降低分类能力。人工鱼群算法(artificial fish swarm algorithm,AFSA)是一种群智能优化算法,具有较强的全局寻优能力和并行处理能力。本文将孪生支持向量机与人工鱼群算法结合,来解决孪生支持向量机的参数选择问题。首先将孪生支持向量机的参数作为人工鱼的位置信息,同时将分类准确率作为目标函数,然后通过人工鱼的觅食、聚群、追尾和随机行为来更新位置和最优解,最后迭代结束时得到最优参数和最优分类准确率。该算法在训练过程中自动确定孪生支持向量机的参数,避免了参数选择的盲目性,提高了孪生支持向量机的分类性能。展开更多
Accurate modeling and recognition of the brain activity patterns for reliable communication and interaction are still a challenging task for the motor imagery (MI) brain-computer interface (BCI) system. In this pa...Accurate modeling and recognition of the brain activity patterns for reliable communication and interaction are still a challenging task for the motor imagery (MI) brain-computer interface (BCI) system. In this paper, we propose a common spatial pattern (CSP) and chaotic particle swarm optimization (CPSO) twin support vector machine (TWSVM) scheme for classification of MI electroencephalography (EEG). The self-adaptive artifact removal and CSP were used to obtain the most distinguishable features. To improve the recognition results, CPSO was employed to tune the hyper-parameters of the TWSVM classifier. The usefulness of the proposed method was evaluated using the BCI competition IV-IIa dataset. The experimental results showed that the mean recognition accuracy of our proposed method was increased by 5.35%, 4.33%, 0.78%, 1.45%, and 9.26% compared with the CPSO support vector machine (SVM), particle swarm optimization (PSO) TWSVM, linear discriminant analysis (LDA), back propagation (BP) and probabilistic neural network (PNN), respectively. Furthermore, it achieved a faster or comparable central processing unit (CPU) running time over the traditional SVM methods.展开更多
为了提高图像识别性能,采用孪生支持向量机用于图像分类识别,并结合二维Gabor小波对图像纹理特征进行提取,借助局部线性嵌入(Locally linear embedding,LLE)降维,以进一步提高图像识别准确率和识别效率。采用二维Gabor小波对图像数据进...为了提高图像识别性能,采用孪生支持向量机用于图像分类识别,并结合二维Gabor小波对图像纹理特征进行提取,借助局部线性嵌入(Locally linear embedding,LLE)降维,以进一步提高图像识别准确率和识别效率。采用二维Gabor小波对图像数据进行有效滤波,获得图像关键纹理特征,然后对大量纹理特征进行LLE降维,以降低维度过高带来的运算量巨大问题,采用孪生支持向量机(Twin support vector machine,TWSVM)对关键纹理特征进行分类,获得图像分类结果并完成图像识别。实验证明,Gabor+LLE+TWSVM方法对图像识别的适用度高,相比常用图像识别算法,通过合理设置二维Gabor小波的尺度和方向参数,并借助LLE有效降维,运用孪生支持向量机可以获得更高的图像识别准确率。展开更多
文摘孪生支持向量机(twin support vector machine,TWSVM)是在支持向量机的基础上产生的机器学习算法,具有训练速度快、分类性能优越等优点。但是孪生支持向量机无法很好地处理参数选择问题,不合适的参数会降低分类能力。人工鱼群算法(artificial fish swarm algorithm,AFSA)是一种群智能优化算法,具有较强的全局寻优能力和并行处理能力。本文将孪生支持向量机与人工鱼群算法结合,来解决孪生支持向量机的参数选择问题。首先将孪生支持向量机的参数作为人工鱼的位置信息,同时将分类准确率作为目标函数,然后通过人工鱼的觅食、聚群、追尾和随机行为来更新位置和最优解,最后迭代结束时得到最优参数和最优分类准确率。该算法在训练过程中自动确定孪生支持向量机的参数,避免了参数选择的盲目性,提高了孪生支持向量机的分类性能。
基金supported by the National Natural Science Foundation of China (61571063)
文摘Accurate modeling and recognition of the brain activity patterns for reliable communication and interaction are still a challenging task for the motor imagery (MI) brain-computer interface (BCI) system. In this paper, we propose a common spatial pattern (CSP) and chaotic particle swarm optimization (CPSO) twin support vector machine (TWSVM) scheme for classification of MI electroencephalography (EEG). The self-adaptive artifact removal and CSP were used to obtain the most distinguishable features. To improve the recognition results, CPSO was employed to tune the hyper-parameters of the TWSVM classifier. The usefulness of the proposed method was evaluated using the BCI competition IV-IIa dataset. The experimental results showed that the mean recognition accuracy of our proposed method was increased by 5.35%, 4.33%, 0.78%, 1.45%, and 9.26% compared with the CPSO support vector machine (SVM), particle swarm optimization (PSO) TWSVM, linear discriminant analysis (LDA), back propagation (BP) and probabilistic neural network (PNN), respectively. Furthermore, it achieved a faster or comparable central processing unit (CPU) running time over the traditional SVM methods.
文摘为了提高图像识别性能,采用孪生支持向量机用于图像分类识别,并结合二维Gabor小波对图像纹理特征进行提取,借助局部线性嵌入(Locally linear embedding,LLE)降维,以进一步提高图像识别准确率和识别效率。采用二维Gabor小波对图像数据进行有效滤波,获得图像关键纹理特征,然后对大量纹理特征进行LLE降维,以降低维度过高带来的运算量巨大问题,采用孪生支持向量机(Twin support vector machine,TWSVM)对关键纹理特征进行分类,获得图像分类结果并完成图像识别。实验证明,Gabor+LLE+TWSVM方法对图像识别的适用度高,相比常用图像识别算法,通过合理设置二维Gabor小波的尺度和方向参数,并借助LLE有效降维,运用孪生支持向量机可以获得更高的图像识别准确率。