The interaction between shock wave and turbulence has been studied in supersonic turbulent mix layer wind tunnel. The interaction between oblique shock wave and turbulent boundary layer and the influence of large vort...The interaction between shock wave and turbulence has been studied in supersonic turbulent mix layer wind tunnel. The interaction between oblique shock wave and turbulent boundary layer and the influence of large vortex in mix layer on oblique shock wave have been observed by NPLS technique. From NPLS image, not only complex flow structure is observed but also time-dependent supersonic flow visualization is realized. The mechanism of interaction between shock wave and turbulence is discussed based on high quality NPLS image.展开更多
The mesoscale numerical weather prediction model (MM4) in which the computations of the turbulent exchange coefficient in the boundary layer and surface fluxes are improved, is used to study the influences of boundary...The mesoscale numerical weather prediction model (MM4) in which the computations of the turbulent exchange coefficient in the boundary layer and surface fluxes are improved, is used to study the influences of boundary layer parameterization schemes on the predictive results of the mesoscale model. Seven different experiment schemes (including the original MM4 model) designed in this paper are tested by the observational data of several heavy rain cases so as to find an improved boundary layer parameterization scheme in the mesoscale meteorological model. The results show that all the seven different boundary layer parameterization schemes have some influences on the forecasts of precipitation intensity, distribution of rain area, vertical velocity, vorticity and divergence fields, and the improved schemes in this paper can improve the precipitation forecast. Key words Boundary layer parameterization - Mesoscale numerical weather prediction (MNWP) - Turbulent exchange coefficient - Surface fluxes - Heavy rain This paper was supported by the National Natural Science Foundation of China (Grant No. 49875005 and No. 49735180).展开更多
Classical turbulent K closure theory of the atmospheric boundary layer assumes that the vertical turbulent transport flux of any macroscopic quantity is equivalent to that quantity's vertical gradient transport fl...Classical turbulent K closure theory of the atmospheric boundary layer assumes that the vertical turbulent transport flux of any macroscopic quantity is equivalent to that quantity's vertical gradient transport flux. But a cross coupling between the thermodynamic processes and the dynamic processes in the atmospheric system is demonstrated based on the Curier-Prigogine principle of cross coupling of linear thermodynamics. The vertical turbulent transportation of energy and substance in the atmospheric boundary layer is related not only to their macroscopic gradient but also to the convergence and the divergence movement. The transportation of the convergence or divergence movement is important for the atmospheric boundary layer of the heterogeneous underlying surface and the convection boundary layer. Based on this, the turbulent transportation in the atmospheric boundary layer, the energy budget of the heterogeneous underlying surface and the convection boundary layer, and the boundary layer parameterization of land surface processes over the heterogeneous underlying surface are studied. This research offers clues not only for establishing the atmospheric boundary layer theory about the heterogeneous underlying surface, but also for overcoming the difficulties encountered recently in the application of the atmospheric boundary layer theory.展开更多
文摘The interaction between shock wave and turbulence has been studied in supersonic turbulent mix layer wind tunnel. The interaction between oblique shock wave and turbulent boundary layer and the influence of large vortex in mix layer on oblique shock wave have been observed by NPLS technique. From NPLS image, not only complex flow structure is observed but also time-dependent supersonic flow visualization is realized. The mechanism of interaction between shock wave and turbulence is discussed based on high quality NPLS image.
文摘The mesoscale numerical weather prediction model (MM4) in which the computations of the turbulent exchange coefficient in the boundary layer and surface fluxes are improved, is used to study the influences of boundary layer parameterization schemes on the predictive results of the mesoscale model. Seven different experiment schemes (including the original MM4 model) designed in this paper are tested by the observational data of several heavy rain cases so as to find an improved boundary layer parameterization scheme in the mesoscale meteorological model. The results show that all the seven different boundary layer parameterization schemes have some influences on the forecasts of precipitation intensity, distribution of rain area, vertical velocity, vorticity and divergence fields, and the improved schemes in this paper can improve the precipitation forecast. Key words Boundary layer parameterization - Mesoscale numerical weather prediction (MNWP) - Turbulent exchange coefficient - Surface fluxes - Heavy rain This paper was supported by the National Natural Science Foundation of China (Grant No. 49875005 and No. 49735180).
基金supported by the National Natural Science Foundation of China under Grant Nos.49835010 and 40233035
文摘Classical turbulent K closure theory of the atmospheric boundary layer assumes that the vertical turbulent transport flux of any macroscopic quantity is equivalent to that quantity's vertical gradient transport flux. But a cross coupling between the thermodynamic processes and the dynamic processes in the atmospheric system is demonstrated based on the Curier-Prigogine principle of cross coupling of linear thermodynamics. The vertical turbulent transportation of energy and substance in the atmospheric boundary layer is related not only to their macroscopic gradient but also to the convergence and the divergence movement. The transportation of the convergence or divergence movement is important for the atmospheric boundary layer of the heterogeneous underlying surface and the convection boundary layer. Based on this, the turbulent transportation in the atmospheric boundary layer, the energy budget of the heterogeneous underlying surface and the convection boundary layer, and the boundary layer parameterization of land surface processes over the heterogeneous underlying surface are studied. This research offers clues not only for establishing the atmospheric boundary layer theory about the heterogeneous underlying surface, but also for overcoming the difficulties encountered recently in the application of the atmospheric boundary layer theory.