The IMC(Internal Model Control) controller based on robust tuning can improve the robustness and dynamic performance of the system.In this paper,the robustness degree of the control system is investigated based on Max...The IMC(Internal Model Control) controller based on robust tuning can improve the robustness and dynamic performance of the system.In this paper,the robustness degree of the control system is investigated based on Maximum Sensitivity(Ms) in depth.And the analytical relationship is obtained between the robustness specification and controller parameters,which gives a clear design criterion to robust IMC controller.Moreover,a novel and simple IMC-PID(Proportional-Integral-Derivative) tuning method is proposed by converting the IMC controller to PID form in terms of the time domain rather than the frequency domain adopted in some conventional IMC-based methods.Hence,the presented IMC-PID gives a good performance with a specific robustness degree.The new IMC-PID method is compared with other classical IMC-PID rules,showing the flexibility and feasibility for a wide range of plants.展开更多
A simple identification method based on a closed-loop experiment is proposed to measure the infinity norm of sensitivity function.A chirp signal,modified to have desired band-limited characteristic and finite duration...A simple identification method based on a closed-loop experiment is proposed to measure the infinity norm of sensitivity function.A chirp signal,modified to have desired band-limited characteristic and finite duration,is used as the excitation in the experiment,and the sensitivity function is calculated using Fourier transform of input and error signals before the infinity norm is evaluated through maximization of the magnitude of sensitivity function.With an additional feature of providing values of gain margin and phase margin at a little extra effort,this method can be used in the identification step of a controller auto-tuning procedure,as having been supported by simulation results showing its capability of providing fast and accurate estimates for a large variety of processes.展开更多
Background A lowβsuperconducting elliptical cavity was designed for the China Spallation Neutron Source phase II project(CSNS-II).Methods The method to improve the mechanical stability of the lowβsuperconducting ell...Background A lowβsuperconducting elliptical cavity was designed for the China Spallation Neutron Source phase II project(CSNS-II).Methods The method to improve the mechanical stability of the lowβsuperconducting elliptical cavity was introduced,and the corresponding mechanical design was given.The software COMSOL Multiphysics and ANSYS APDL were used to calculate the static Lorentz force detuning factor k_(L)(LFD)and the helium pressure sensitivity factor k_(p)(DFDP)of the bare cavity,which were−4.71 Hz(MV/m)^(−2) and−21.1 Hz/mbar,respectively.The double-ring stiffeners reinforcement scheme was adopted.Results The radii of the double-ring stiffeners were 70 and 135 mm,respectively.The structure design of the helium vessel of the cavity was given.The following is the mechanical parameters of the reinforced cavity,the tuning sensitivity is 199.8 kHz/mm,longitudinal stiffness is 4.76kN/mm,k_(L) and k_(p) were−1.39 Hz(MV/m)^(−2) and 4.67 Hz/mbar,respectively,which met the operating requirements.The tuning sensitivity and stiffness of the reinforced cavity with different wall thicknesses were optimized,and the final wall thickness was selected as 4 mm.Conclusion The mechanical design of CSNS-II 648 MHz five-cell lowβsuperconducting elliptical cavity was introduced systematically in the paper.The LFD,DFDP,and the maximum surface stress of the cavity were reduced by optimizing the cavity wall thickness and the position of the double-ring stiffeners.The reinforced cavity met operational requirements.展开更多
基金Supported by the National Natural Science Foundation of China(61273132)Doctoral Fund of Ministry of Education of China(20110010110010)
文摘The IMC(Internal Model Control) controller based on robust tuning can improve the robustness and dynamic performance of the system.In this paper,the robustness degree of the control system is investigated based on Maximum Sensitivity(Ms) in depth.And the analytical relationship is obtained between the robustness specification and controller parameters,which gives a clear design criterion to robust IMC controller.Moreover,a novel and simple IMC-PID(Proportional-Integral-Derivative) tuning method is proposed by converting the IMC controller to PID form in terms of the time domain rather than the frequency domain adopted in some conventional IMC-based methods.Hence,the presented IMC-PID gives a good performance with a specific robustness degree.The new IMC-PID method is compared with other classical IMC-PID rules,showing the flexibility and feasibility for a wide range of plants.
基金Sponsored by the Key Construction Program of the"985"Program (1010012047201)
文摘A simple identification method based on a closed-loop experiment is proposed to measure the infinity norm of sensitivity function.A chirp signal,modified to have desired band-limited characteristic and finite duration,is used as the excitation in the experiment,and the sensitivity function is calculated using Fourier transform of input and error signals before the infinity norm is evaluated through maximization of the magnitude of sensitivity function.With an additional feature of providing values of gain margin and phase margin at a little extra effort,this method can be used in the identification step of a controller auto-tuning procedure,as having been supported by simulation results showing its capability of providing fast and accurate estimates for a large variety of processes.
基金Work supported by Project of Basic and Applied Basic Research Fund of Guangdong Province:Yue Guan joint fund(2019B1515120012).
文摘Background A lowβsuperconducting elliptical cavity was designed for the China Spallation Neutron Source phase II project(CSNS-II).Methods The method to improve the mechanical stability of the lowβsuperconducting elliptical cavity was introduced,and the corresponding mechanical design was given.The software COMSOL Multiphysics and ANSYS APDL were used to calculate the static Lorentz force detuning factor k_(L)(LFD)and the helium pressure sensitivity factor k_(p)(DFDP)of the bare cavity,which were−4.71 Hz(MV/m)^(−2) and−21.1 Hz/mbar,respectively.The double-ring stiffeners reinforcement scheme was adopted.Results The radii of the double-ring stiffeners were 70 and 135 mm,respectively.The structure design of the helium vessel of the cavity was given.The following is the mechanical parameters of the reinforced cavity,the tuning sensitivity is 199.8 kHz/mm,longitudinal stiffness is 4.76kN/mm,k_(L) and k_(p) were−1.39 Hz(MV/m)^(−2) and 4.67 Hz/mbar,respectively,which met the operating requirements.The tuning sensitivity and stiffness of the reinforced cavity with different wall thicknesses were optimized,and the final wall thickness was selected as 4 mm.Conclusion The mechanical design of CSNS-II 648 MHz five-cell lowβsuperconducting elliptical cavity was introduced systematically in the paper.The LFD,DFDP,and the maximum surface stress of the cavity were reduced by optimizing the cavity wall thickness and the position of the double-ring stiffeners.The reinforced cavity met operational requirements.