Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of...Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of the parameters was proposed based on the finite element (FE) simulation, and the significance analysis of the processing parameters on the forming quality in terms of the maximum wall thinning ratio and the maximum cross section distortion degree was implemented using the fractional factorial design. The optimum value of the significant parameter, the clearance between the tube and the wiper die, was obtained, and the values of the other parameters, including the friction coefficients and the clearances between the tube and the dies, the mandrel extension length and the boost velocity were estimated. The results are applied to aluminum alloy tube NC bending d50 mm×1 mm×75 mm and d70 mm×1.5 mm×105 mm (initial tube outside diameter D0 × initial tube wall thickness t0 × bending radius R), and qualified tubes are produced.展开更多
Objective Our objective is to build a model that explains the association between the exposure to trace elements in the soil and the risk of neural tube defects. Methods We built a function with different parameters t...Objective Our objective is to build a model that explains the association between the exposure to trace elements in the soil and the risk of neural tube defects. Methods We built a function with different parameters to describe the effects of trace elements on neural tube defects. The association between neural tube defects and trace element levels was transformed into an optimization problem using the maximum likelihood method. Results Tin, lead, nickel, iron, copper, and aluminum had typical layered effects (dosage effects) on the prevalence of neural tube defects. Arsenic, selenium, zinc, strontium, and vanadium had no effect, and molybdenum had one threshold value that affected the prevalence of birth defects. Conclusion As an exploratory research work, our model can be used to determine the direction of the effect of the trace element content of cultivated soil on the risk of neural tube defects, which shows the clues by the dosage effect of their toxicological characteristics. Based on our findings, future biogeochemical research should focus on the direct effects of trace elements on human health.展开更多
For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-p...For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.展开更多
Three dimensional(3D)tubes,which possess the characteristics of space saving,lightweight and high strength,are widely used in many high-end industries such as aviation,aerospace,automobile and shipbuilding.However,whe...Three dimensional(3D)tubes,which possess the characteristics of space saving,lightweight and high strength,are widely used in many high-end industries such as aviation,aerospace,automobile and shipbuilding.However,when manufacturing a 3D tube in flexible bending process,springback is a big obstacle for improving the forming quality.In this paper,a new comprehensive strategy for springback control of 3D tubes is proposed.The strategy can be described as follows:(1)define the desired shape and manufacture shape;(2)optimize the manufacture shape using two tooling design methods(e.g.DA(displacement adjustment)method and B&T(bending and twisting)method presented in this paper);(3)make a discretization of the manufacture shape to acquire the optimized forming parameters.Additionally,experiment is implemented to validate the effectiveness of the new strategy.Results show that forming parameters acquired by the new strategy are partially effective.The new strategy also demonstrates that,during 3D tubes forming,the deviation caused by over-bent elements can be counteracted by the deficient-bent elements.This principle is helpful to reduce the difficulty of parameter determination in future.展开更多
An integrated mathematical model to simulate seamless tube rolling processes has been developed at The Timken Company. The model is capable of simulating the thermal, deformation and microstructure evolution in the pi...An integrated mathematical model to simulate seamless tube rolling processes has been developed at The Timken Company. The model is capable of simulating the thermal, deformation and microstructure evolution in the piercing, elongating and reducing/sizing and the austenite decomposition in the mill annealing and cooling operations. Finite difference schemes are employed to model cooling, reducing/sizing and stretch reducing, and finite-element schemes are employed to simulate piercing and elongating. The model predicts the thermal history, deformation, rolling load, torque, recrystallization and grain growth in hot tube rolling, austenite decomposition in cooling or annealing, and the final structure-properties. In this paper mathematical models which are employed to describe the thermal, deformation and microstructure evolution along with the modeling results are presented. The developed 'tube rolling mill in the computer' provides a powerful tool for engineers for product and process development, process control, process optimization and quality control.展开更多
The forming quality of high-strength TA18 titanium alloy tube during numerical control bending in changing bending angle β, relative bending radius R/D and tube sizes such as diameter D and wall thickness t was clari...The forming quality of high-strength TA18 titanium alloy tube during numerical control bending in changing bending angle β, relative bending radius R/D and tube sizes such as diameter D and wall thickness t was clarified by finite element simulation. The results show that the distribution of wall thickness change ratio Δt and cross section deformation ratio ΔD are very similar under different β; the Δt and ΔD decrease with the increase of R/D, and to obtain the qualified bent tube, the R/D must be greater than 2.0; the wall thinning ratio Δto slightly increases with larger D and t, while the wall thickening ratio Δti and ΔD increase with the larger D and smaller t; the Δto and ΔD firstly decrease and then increase, while the Δti increases, for the same D/t with the increase of D and t.展开更多
基金Projects (50905144, 50875216) supported by the National Natural Science Foundation of ChinaProject (09-10) supported by the State Key Laboratory of Materials Processing and Die & Mould Technology, ChinaProject (JC201028) supported by the Northwestern Polytechnical University Foundation for Fundamental Research, China
文摘Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of the parameters was proposed based on the finite element (FE) simulation, and the significance analysis of the processing parameters on the forming quality in terms of the maximum wall thinning ratio and the maximum cross section distortion degree was implemented using the fractional factorial design. The optimum value of the significant parameter, the clearance between the tube and the wiper die, was obtained, and the values of the other parameters, including the friction coefficients and the clearances between the tube and the dies, the mandrel extension length and the boost velocity were estimated. The results are applied to aluminum alloy tube NC bending d50 mm×1 mm×75 mm and d70 mm×1.5 mm×105 mm (initial tube outside diameter D0 × initial tube wall thickness t0 × bending radius R), and qualified tubes are produced.
基金supported by the National "973" project on Population and Health (No. 2007CB5119001)the National Yang‐Zi Scholar Program, 211 and 985 projects of Peking University (No. 20020903)
文摘Objective Our objective is to build a model that explains the association between the exposure to trace elements in the soil and the risk of neural tube defects. Methods We built a function with different parameters to describe the effects of trace elements on neural tube defects. The association between neural tube defects and trace element levels was transformed into an optimization problem using the maximum likelihood method. Results Tin, lead, nickel, iron, copper, and aluminum had typical layered effects (dosage effects) on the prevalence of neural tube defects. Arsenic, selenium, zinc, strontium, and vanadium had no effect, and molybdenum had one threshold value that affected the prevalence of birth defects. Conclusion As an exploratory research work, our model can be used to determine the direction of the effect of the trace element content of cultivated soil on the risk of neural tube defects, which shows the clues by the dosage effect of their toxicological characteristics. Based on our findings, future biogeochemical research should focus on the direct effects of trace elements on human health.
基金Project(51164030)supported by the National Natural Science Foundation of China
文摘For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.
基金supported by Key Research and Development Program of Shaanxi of China(No.2020ZDLGY01-05)。
文摘Three dimensional(3D)tubes,which possess the characteristics of space saving,lightweight and high strength,are widely used in many high-end industries such as aviation,aerospace,automobile and shipbuilding.However,when manufacturing a 3D tube in flexible bending process,springback is a big obstacle for improving the forming quality.In this paper,a new comprehensive strategy for springback control of 3D tubes is proposed.The strategy can be described as follows:(1)define the desired shape and manufacture shape;(2)optimize the manufacture shape using two tooling design methods(e.g.DA(displacement adjustment)method and B&T(bending and twisting)method presented in this paper);(3)make a discretization of the manufacture shape to acquire the optimized forming parameters.Additionally,experiment is implemented to validate the effectiveness of the new strategy.Results show that forming parameters acquired by the new strategy are partially effective.The new strategy also demonstrates that,during 3D tubes forming,the deviation caused by over-bent elements can be counteracted by the deficient-bent elements.This principle is helpful to reduce the difficulty of parameter determination in future.
文摘An integrated mathematical model to simulate seamless tube rolling processes has been developed at The Timken Company. The model is capable of simulating the thermal, deformation and microstructure evolution in the piercing, elongating and reducing/sizing and the austenite decomposition in the mill annealing and cooling operations. Finite difference schemes are employed to model cooling, reducing/sizing and stretch reducing, and finite-element schemes are employed to simulate piercing and elongating. The model predicts the thermal history, deformation, rolling load, torque, recrystallization and grain growth in hot tube rolling, austenite decomposition in cooling or annealing, and the final structure-properties. In this paper mathematical models which are employed to describe the thermal, deformation and microstructure evolution along with the modeling results are presented. The developed 'tube rolling mill in the computer' provides a powerful tool for engineers for product and process development, process control, process optimization and quality control.
基金Project(GJJ150810)supported by the Research Project of Science and Technology for Jiangxi Province Department of Education,ChinaProject(gf201501001)supported by National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University,ChinaProject(BSJJ2015015)supported by Doctor Start-up Fund of Jiangxi Science&Technology Normal University,China
文摘The forming quality of high-strength TA18 titanium alloy tube during numerical control bending in changing bending angle β, relative bending radius R/D and tube sizes such as diameter D and wall thickness t was clarified by finite element simulation. The results show that the distribution of wall thickness change ratio Δt and cross section deformation ratio ΔD are very similar under different β; the Δt and ΔD decrease with the increase of R/D, and to obtain the qualified bent tube, the R/D must be greater than 2.0; the wall thinning ratio Δto slightly increases with larger D and t, while the wall thickening ratio Δti and ΔD increase with the larger D and smaller t; the Δto and ΔD firstly decrease and then increase, while the Δti increases, for the same D/t with the increase of D and t.