A Fe/Al clad tube was prepared by explosive welding.Then the bonding characteristic of the interface was investigated by compression,flattening and compression-shear test.The test results exhibit that the clad tubes p...A Fe/Al clad tube was prepared by explosive welding.Then the bonding characteristic of the interface was investigated by compression,flattening and compression-shear test.The test results exhibit that the clad tubes possessing good bonding interface have higher shear strength than that of pure aluminum and can bear both axial and radial deformation.The original interface between aluminum layer and ferrite layer was observed by scanning electron microscopy(SEM).The results show that the clad tubes with good bonding properties possess the interface in wave and straight shape.The Fe/Al clad tube was used to manufacture the T-shape by hydro-bulging.It is found that the good-bonding interface of the Fe/Al clad tube plays a dominant role in the formation of the T-shape.展开更多
With the implementation of environmental protection, sustainable development and conservation-oriented policies, components and parts of thin-walled welded tubes have gained increasing application in the aircraft and ...With the implementation of environmental protection, sustainable development and conservation-oriented policies, components and parts of thin-walled welded tubes have gained increasing application in the aircraft and automotive industries because of their advantages: easily achieving forming and manufacturing process at low cost and in a short time. The current research on welded tube plastic forming is mainly concentrated on tube internal high-pressure forming, tube bending forming, and tube spinning forming. The focuses are on the material properties and char- acterization of welded tubes, finite element modeling for welded tube forming, and inhomogeneous deformation behavior and the mechanism and rules of deformation coordination in welded tube plastic forming. This paper summarizes the research progress in welded tube plastic forming from these aspects. Finally, with a focus on the urgent demand of the aviation, aerospace and automotive industries for high-strength and light-weight tubes, this paper discusses the development trends and challenges in the theory and technology of welded tube plastic forming in the future. Among them, laser tailor-welded technology will find application in the manufacture of high-strength steel tubes. Tube-end forming technology, such as tube flaring and flanging technology, will expand its appli- cation in welded tubes. Therefore, future studies will focus on the FE modeling regarding how to consider effects of welding on residual stresses, welding distortions and microstructure, the inhomo- geneous deformation and coordination mechanism of the plastic forming process of tailor-welded tubes, and some end-forming processes of welded tubes, and more comprehensive research on the formin~ mechanism and limit of welded tubes.展开更多
With the aid of FE (finite element) code MSC.Superform 2005, 2-D coupled thermo-mechanical simulation of center-crack occurrence in round billet during 2-roll rotary rolling process was presented using Oyane ductile...With the aid of FE (finite element) code MSC.Superform 2005, 2-D coupled thermo-mechanical simulation of center-crack occurrence in round billet during 2-roll rotary rolling process was presented using Oyane ductile fracture criteria. A simple modeling is put forward based on the spiral motion of the workpiece as an essential characteristic in movement. The influence of the feed angle and the entry cone angle of the main roll on the process was taken into account in the modeling. The soundness for simplifying the 3-D rotary rolling into a 2-D problem was discussed. By adopting the parameters of Diescher piercer in 140mm mandrel mill of Bao Steel, the distribution and development of strain/stress were analyzed, and the eigen value of ductile fracture as well. The critical percentage of diameter reduction was obtained from the simulation. The result showed a good agreement with the experimental value, and therefore was of widely guiding significance to the practical process for rationally formulating the deformation parameters of steel tube piercing.展开更多
For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-p...For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.展开更多
In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis meth...In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis method and the springback/section deformation prediction finite element model, and by using this model the sensitivities of the springback and the section deformation to process parameters were analyzed and compared. The results show that the most sensitive process conditions for springback angle are the boost speed and the pressure of pressure die, and the most sensitive process condition for section deformation is the number of cores. When the clamp force, the boost speed and the pressure of pressure die are utilized to control section deformation, the effect of these process parameters on springback should be considered. When the process parameters are mainly used to control springback, the effect of these process parameters on the section deformation should be always considered.展开更多
基金Project(BA2006067)supported by Achievement Transitional Foundation of Jiangsu Province,China
文摘A Fe/Al clad tube was prepared by explosive welding.Then the bonding characteristic of the interface was investigated by compression,flattening and compression-shear test.The test results exhibit that the clad tubes possessing good bonding interface have higher shear strength than that of pure aluminum and can bear both axial and radial deformation.The original interface between aluminum layer and ferrite layer was observed by scanning electron microscopy(SEM).The results show that the clad tubes with good bonding properties possess the interface in wave and straight shape.The Fe/Al clad tube was used to manufacture the T-shape by hydro-bulging.It is found that the good-bonding interface of the Fe/Al clad tube plays a dominant role in the formation of the T-shape.
基金support from the National Science Fund for Excellent Young Scholars of China(No.51222509)the National Natural Science Foundation of China(No.51175429)+1 种基金the Research Fund of the State Key Laboratory of Solidification Processing(No.97-QZ-2014 and 90-QP-2013)of Chinathe Marie Curie International Research Staff Exchange Scheme(IRSES,Mat Pro Future,No.318968)within the 7th EC Framework Programme(FP7)
文摘With the implementation of environmental protection, sustainable development and conservation-oriented policies, components and parts of thin-walled welded tubes have gained increasing application in the aircraft and automotive industries because of their advantages: easily achieving forming and manufacturing process at low cost and in a short time. The current research on welded tube plastic forming is mainly concentrated on tube internal high-pressure forming, tube bending forming, and tube spinning forming. The focuses are on the material properties and char- acterization of welded tubes, finite element modeling for welded tube forming, and inhomogeneous deformation behavior and the mechanism and rules of deformation coordination in welded tube plastic forming. This paper summarizes the research progress in welded tube plastic forming from these aspects. Finally, with a focus on the urgent demand of the aviation, aerospace and automotive industries for high-strength and light-weight tubes, this paper discusses the development trends and challenges in the theory and technology of welded tube plastic forming in the future. Among them, laser tailor-welded technology will find application in the manufacture of high-strength steel tubes. Tube-end forming technology, such as tube flaring and flanging technology, will expand its appli- cation in welded tubes. Therefore, future studies will focus on the FE modeling regarding how to consider effects of welding on residual stresses, welding distortions and microstructure, the inhomo- geneous deformation and coordination mechanism of the plastic forming process of tailor-welded tubes, and some end-forming processes of welded tubes, and more comprehensive research on the formin~ mechanism and limit of welded tubes.
文摘With the aid of FE (finite element) code MSC.Superform 2005, 2-D coupled thermo-mechanical simulation of center-crack occurrence in round billet during 2-roll rotary rolling process was presented using Oyane ductile fracture criteria. A simple modeling is put forward based on the spiral motion of the workpiece as an essential characteristic in movement. The influence of the feed angle and the entry cone angle of the main roll on the process was taken into account in the modeling. The soundness for simplifying the 3-D rotary rolling into a 2-D problem was discussed. By adopting the parameters of Diescher piercer in 140mm mandrel mill of Bao Steel, the distribution and development of strain/stress were analyzed, and the eigen value of ductile fracture as well. The critical percentage of diameter reduction was obtained from the simulation. The result showed a good agreement with the experimental value, and therefore was of widely guiding significance to the practical process for rationally formulating the deformation parameters of steel tube piercing.
基金Project(51164030)supported by the National Natural Science Foundation of China
文摘For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.
基金Project (50975235) supported by the National Natural Science Foundation of ChinaProject (B08040) supported by the 111 Project
文摘In order to study the effects of the process parameters on springback and section deformation, a sensitivity analysis model was established based on the combination use of the multi-parameter sensitivity analysis method and the springback/section deformation prediction finite element model, and by using this model the sensitivities of the springback and the section deformation to process parameters were analyzed and compared. The results show that the most sensitive process conditions for springback angle are the boost speed and the pressure of pressure die, and the most sensitive process condition for section deformation is the number of cores. When the clamp force, the boost speed and the pressure of pressure die are utilized to control section deformation, the effect of these process parameters on springback should be considered. When the process parameters are mainly used to control springback, the effect of these process parameters on the section deformation should be always considered.