The year-to-year increment prediction approach proposed by was applied to forecast the annual number of tropical cyclones (TCs) making landfall over China.The year-to-year increase or decrease in the number of land-fa...The year-to-year increment prediction approach proposed by was applied to forecast the annual number of tropical cyclones (TCs) making landfall over China.The year-to-year increase or decrease in the number of land-falling TCs (LTCs) was first predicted to yield a net number of LTCs between successive years.The statistical prediction scheme for the year-to-year increment of annual LTCs was developed based on data collected from 1977 to 2007,which includes five predictors associated with high latitude circulations in both Hemispheres and the circulation over the local,tropical western North Pacific Ocean.The model shows reasonably high predictive ability,with an average root mean square error (RMSE) of 1.09,a mean absolute error (MAE) of 0.9,and a correlation coefficient between the predicted and observed annual number of LTCs of 0.86,accounting for 74% of the total variance.The cross-validation test further demonstrated the high predictive ability of the model,with an RMSE value of 1.4,an MAE value of 1.2,and a correlation coefficient of 0.74 during this period.展开更多
Based on the Tropical Cyclone(TC briefly thereafter)Yearbook 1980-2009,this paper first analyzes the number and intensity change of the TCs which passed directly over or by the side of Poyang Lake(the distance of TC c...Based on the Tropical Cyclone(TC briefly thereafter)Yearbook 1980-2009,this paper first analyzes the number and intensity change of the TCs which passed directly over or by the side of Poyang Lake(the distance of TC center is less than 1°longitude or 1°latitude from the Lake)among all the landfalling TCs in China during the past 30 years.Two cases are examined in detail in this paper.One is severe typhoon Rananim with a speed of 3.26 m/s and a change of 1 hPa in intensity when it was passing the Lake.The other is super typhoon Saomai with a faster moving speed of 6.50 m/s and a larger change in intensity of 6 hPa.Through numerical simulation experiments,this paper analyzes how the change of underlying surface from water to land contributes to the differences in intensity,speed and mesoscale convection of the two TCs when they passed the Lake.Results show that the moisture and dynamic condition above the Lake were favorable for the maintenance of the intensity when Rananim was passing through Poyang Lake,despite the moisture supply from the ocean was cut off.As a result,there was strong convection around the lake which led to a rainfall spinning counter-clockwise as it was affected by the TC movement.However,little impact was seen in the Saomai case.These results indicate that for the TCs coming ashore on Poyang Lake with a slow speed,the large water body is conducive to the sustaining of the intensity and strengthening of the convection around the TC center and the subsequent heavy rainfall.On the contrary,a fast-moving TC is less likely to be influenced by the underlying surface in terms of intensity and speed.展开更多
In this study, the variability of tropical cyclone (TC) landfall and approach over Mozambique as well as the environmental factors influencing were investigated. The frequencies of tropical cyclone landfall and approa...In this study, the variability of tropical cyclone (TC) landfall and approach over Mozambique as well as the environmental factors influencing were investigated. The frequencies of tropical cyclone landfall and approach as well as environmental factors were compared between the two periods (1980 to 1999 and 2000 to 2020). This study found that, according to International Best Track Archive for Climate Stewardship (IBTrACS) tropical cyclone data, the number of tropical cyclones making landfall over Mozambique increased by about 66% in the second period (2000-2020), compared to 34% in the first period (1980-1999). While the number of tropical cyclone approaches reduced from 59% in the first period to 41% in the second period. An assessment of the environmental conditions showed that warmer sea surface temperature (SST) and low vertical wind shear (VWS) were favorable to more TC genesis and, consequently, an increase in landfalls and a reduction in TC confined to the approach.展开更多
This report briefly summarizes recent progress in storm surge forecasts, one of topics discussed during the fourth International Workshop on Tropical Cyclone Landfall Process(IWTCLP 4) held during 5-8 December, 2017. ...This report briefly summarizes recent progress in storm surge forecasts, one of topics discussed during the fourth International Workshop on Tropical Cyclone Landfall Process(IWTCLP 4) held during 5-8 December, 2017. In the workshop, improvement of storm surge forecasting system was mainly discussed with relevance to the problem of estimating the impacts of tropical cyclone landfall.To deal with storm surges, accurate TC condition(predictions and forecasts) as input, reasonable storm surge predictions(with forecasting systems), and effective advisories/warnings(i.e. useful information products) are necessary. Therefore, we need to improve storm surge related matters systematically: input, prediction system, and ef fective information.This report tries to highlight recent progress in the field of storm surges in relation to three key points: improvement in storm surge forecasting models/system, TC conditions as input for storm surge predictions, and informative products for end users.展开更多
Surface heat and moisture fluxes are important to the evolution of a tropical storm after its landfall. Soil moisture is one of the essential components that influence surface heating and moisture fluxes. In this stud...Surface heat and moisture fluxes are important to the evolution of a tropical storm after its landfall. Soil moisture is one of the essential components that influence surface heating and moisture fluxes. In this study, the impact of soil moisture on a pre-landfall numerical simulation of Tropical Storm Bill(2015), which had a much longer lifespan over land, is investigated by using the research version of the NCEP Hurricane Weather Research and Forecasting(HWRF) model. It is found that increased soil moisture with SLAB scheme before storm's landfall tends to produce a weaker storm after landfall and has negative impacts on storm track simulation. Further diagnoses with different land surface schemes and sensitivity experiments indicate that the increase in soil moisture inside the storm corresponds to a strengthened vertical mixing within the storm boundary layer, which is conducive to the decay of storm and has negative impacts on storm evolution. In addition, surface diabatic heating effects over the storm environment are also found to be an important positive contribution to the storm evolution over land, but their impacts are not so substantial as boundary layer vertical mixing inside the storm. The overall results highlight the importance and uncertainty of soil moisture in numerical model simulations of landfalling hurricanes and their further evolution over land.展开更多
This study analyzes landfall locations of tropical cyclones(TCs)over the western North Pacific during 1979–2018.Results demonstrate that the landfall locations of TCs over this region have shifted northward during th...This study analyzes landfall locations of tropical cyclones(TCs)over the western North Pacific during 1979–2018.Results demonstrate that the landfall locations of TCs over this region have shifted northward during the last four decades,primarily due to the shift of landfalling TC tracks,with the decreasing/increasing proportion of westward/northward TC tracks.In particular,the northward shift of the landfalling TCs was not related to their formation locations,which have not markedly changed,whereas"no-landed"TCs have significantly shifted northward.TC movement was significantly and positively correlated to the zonal component of the steering flow,while the correlation between TC movement and the meridional component of the steering flow was relatively unobvious.The westward steering flow in the tropical central Pacific that occurred around the formation and early development of the westward TCs was significantly weakened,which was unfavorable for their westward movement,thereby,causing the higher proportions of northward moving tracks.This weakened westward flow was related to the northward shift of the subtropical high ridge,which was caused by significant weakening of the southern part of the subtropical high.The vertical wind shear,sea surface temperature,and convective available potential energy also showed that the northern region of the western North Pacific became more favorable for TC development,whereas the upper divergence,low-layer relative vorticity,and accumulated water vapor content were not obviously related to the northward shift of TCs.展开更多
基金jointly supported by the National Natural Science Foundation of China (Grant No.40775049)the IAP Key Innovation Programs (IAP07117 and IAP09302)the Basic Research Program of China (Grant No.2009CB421406)
文摘The year-to-year increment prediction approach proposed by was applied to forecast the annual number of tropical cyclones (TCs) making landfall over China.The year-to-year increase or decrease in the number of land-falling TCs (LTCs) was first predicted to yield a net number of LTCs between successive years.The statistical prediction scheme for the year-to-year increment of annual LTCs was developed based on data collected from 1977 to 2007,which includes five predictors associated with high latitude circulations in both Hemispheres and the circulation over the local,tropical western North Pacific Ocean.The model shows reasonably high predictive ability,with an average root mean square error (RMSE) of 1.09,a mean absolute error (MAE) of 0.9,and a correlation coefficient between the predicted and observed annual number of LTCs of 0.86,accounting for 74% of the total variance.The cross-validation test further demonstrated the high predictive ability of the model,with an RMSE value of 1.4,an MAE value of 1.2,and a correlation coefficient of 0.74 during this period.
基金China National Science Foundation(40730948,41075037,41175063)Special Project of Chinese Academy of Meteorological Sciences(2007Y006)
文摘Based on the Tropical Cyclone(TC briefly thereafter)Yearbook 1980-2009,this paper first analyzes the number and intensity change of the TCs which passed directly over or by the side of Poyang Lake(the distance of TC center is less than 1°longitude or 1°latitude from the Lake)among all the landfalling TCs in China during the past 30 years.Two cases are examined in detail in this paper.One is severe typhoon Rananim with a speed of 3.26 m/s and a change of 1 hPa in intensity when it was passing the Lake.The other is super typhoon Saomai with a faster moving speed of 6.50 m/s and a larger change in intensity of 6 hPa.Through numerical simulation experiments,this paper analyzes how the change of underlying surface from water to land contributes to the differences in intensity,speed and mesoscale convection of the two TCs when they passed the Lake.Results show that the moisture and dynamic condition above the Lake were favorable for the maintenance of the intensity when Rananim was passing through Poyang Lake,despite the moisture supply from the ocean was cut off.As a result,there was strong convection around the lake which led to a rainfall spinning counter-clockwise as it was affected by the TC movement.However,little impact was seen in the Saomai case.These results indicate that for the TCs coming ashore on Poyang Lake with a slow speed,the large water body is conducive to the sustaining of the intensity and strengthening of the convection around the TC center and the subsequent heavy rainfall.On the contrary,a fast-moving TC is less likely to be influenced by the underlying surface in terms of intensity and speed.
文摘In this study, the variability of tropical cyclone (TC) landfall and approach over Mozambique as well as the environmental factors influencing were investigated. The frequencies of tropical cyclone landfall and approach as well as environmental factors were compared between the two periods (1980 to 1999 and 2000 to 2020). This study found that, according to International Best Track Archive for Climate Stewardship (IBTrACS) tropical cyclone data, the number of tropical cyclones making landfall over Mozambique increased by about 66% in the second period (2000-2020), compared to 34% in the first period (1980-1999). While the number of tropical cyclone approaches reduced from 59% in the first period to 41% in the second period. An assessment of the environmental conditions showed that warmer sea surface temperature (SST) and low vertical wind shear (VWS) were favorable to more TC genesis and, consequently, an increase in landfalls and a reduction in TC confined to the approach.
基金a part of the fund of the project "Study the mechanism of the after-runner storm surge in the north coast of Vietnam by a coupled numerical model and propose the improvement technology of forecasting storm surge under the climate change"Vietnam National Foundation for Science and Technology Development (NAFOSTED)
文摘This report briefly summarizes recent progress in storm surge forecasts, one of topics discussed during the fourth International Workshop on Tropical Cyclone Landfall Process(IWTCLP 4) held during 5-8 December, 2017. In the workshop, improvement of storm surge forecasting system was mainly discussed with relevance to the problem of estimating the impacts of tropical cyclone landfall.To deal with storm surges, accurate TC condition(predictions and forecasts) as input, reasonable storm surge predictions(with forecasting systems), and effective advisories/warnings(i.e. useful information products) are necessary. Therefore, we need to improve storm surge related matters systematically: input, prediction system, and ef fective information.This report tries to highlight recent progress in the field of storm surges in relation to three key points: improvement in storm surge forecasting models/system, TC conditions as input for storm surge predictions, and informative products for end users.
基金Supported by the US National Science Foundation(AGS-1243027)National Natural Science Foundation of China(41805032)Fundamental Research Funds of the Central Universities(lzujbky-2017-71)
文摘Surface heat and moisture fluxes are important to the evolution of a tropical storm after its landfall. Soil moisture is one of the essential components that influence surface heating and moisture fluxes. In this study, the impact of soil moisture on a pre-landfall numerical simulation of Tropical Storm Bill(2015), which had a much longer lifespan over land, is investigated by using the research version of the NCEP Hurricane Weather Research and Forecasting(HWRF) model. It is found that increased soil moisture with SLAB scheme before storm's landfall tends to produce a weaker storm after landfall and has negative impacts on storm track simulation. Further diagnoses with different land surface schemes and sensitivity experiments indicate that the increase in soil moisture inside the storm corresponds to a strengthened vertical mixing within the storm boundary layer, which is conducive to the decay of storm and has negative impacts on storm evolution. In addition, surface diabatic heating effects over the storm environment are also found to be an important positive contribution to the storm evolution over land, but their impacts are not so substantial as boundary layer vertical mixing inside the storm. The overall results highlight the importance and uncertainty of soil moisture in numerical model simulations of landfalling hurricanes and their further evolution over land.
基金supported by the Fundamental Research Funds of the Special Program for Key Research and Development of Guangdong Province(Grant No.2019B111101002)Guangzhou Science and Technology Planning Project(Grant No.201903010036)+2 种基金China Postdoctoral Science Foundation(Grant No.2020M683021)National Natural Science Foundation of China(Grant Nos.42075004,41875021,and 41830533)Key Laboratory of Tropical Atmosphere-Ocean System(Sun Yat-sen University),Ministry of Education。
文摘This study analyzes landfall locations of tropical cyclones(TCs)over the western North Pacific during 1979–2018.Results demonstrate that the landfall locations of TCs over this region have shifted northward during the last four decades,primarily due to the shift of landfalling TC tracks,with the decreasing/increasing proportion of westward/northward TC tracks.In particular,the northward shift of the landfalling TCs was not related to their formation locations,which have not markedly changed,whereas"no-landed"TCs have significantly shifted northward.TC movement was significantly and positively correlated to the zonal component of the steering flow,while the correlation between TC movement and the meridional component of the steering flow was relatively unobvious.The westward steering flow in the tropical central Pacific that occurred around the formation and early development of the westward TCs was significantly weakened,which was unfavorable for their westward movement,thereby,causing the higher proportions of northward moving tracks.This weakened westward flow was related to the northward shift of the subtropical high ridge,which was caused by significant weakening of the southern part of the subtropical high.The vertical wind shear,sea surface temperature,and convective available potential energy also showed that the northern region of the western North Pacific became more favorable for TC development,whereas the upper divergence,low-layer relative vorticity,and accumulated water vapor content were not obviously related to the northward shift of TCs.