As revealed by the observational study, there are more tropical cyclones generated over the western North Pacific from the early 1950s to the early 1970s in the 20th century and less tropical cyclones from the mid-197...As revealed by the observational study, there are more tropical cyclones generated over the western North Pacific from the early 1950s to the early 1970s in the 20th century and less tropical cyclones from the mid-1970s to the present. The decadal change of "tropical cyclones activities are closely related to the decadal changes of atmospheric general circulation in the troposphere, which provide favorable or unfavorable conditions for the formation of tropical cyclone. Furthermore, based on the simulation of corresponding atmospheric general circulation from a coupled climate model under the schemes of Intergovemmental Panel on Climate Change (IPCC),special report on emission scenarios (SRES) A2 and B2 emissions scenarios an outlook on the tropical cyclone frequency generated over the western North Pacific in the coming half century is presented. It is indicated that in response to the global climate change the general circulation of atmosphere would become unfavorable for the formation of tropical cyclone as a whole and the frequency of tropical cyclones formation would likely decrease by 5% within the next half century, although more tropical cyclones would appear during a short period in it.展开更多
Using monthly mean National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data for the period 1958-1996, based on a new circulation index in the tropical western P...Using monthly mean National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data for the period 1958-1996, based on a new circulation index in the tropical western Pacific region, this paper investigates extreme winter circulation conditions in the northwestern Pacific and their evolution. The results show that the extreme winter circulation anomaly in the northwestern Pacific exhibits a strong association with those appearing in the high latitudes of the Northern Hemisphere including the northern Asian continent, part of the Barents Sea, and the northeastern Pacific. As the season progresses, an anticyclonic (cyclonic) circulation anomaly appearing in the northwestern Pacific gradually moves northeastwards and extends westwards. Its axis in the west-east direction is also stretched. Therefore, easterly (westerly) anomalies in the southern part of the anticyclonic (cyclonic) circulation anomaly continuously expand westwards to the peninsula of India. Therefore, the South Asian summer monsoon would be weaker (stronger). Simultaneously, another interesting phenomenon is the evolution of SLP anomalies. As the season progresses (from winter to the following summer), SLP anomalies originating from the tropical western Pacific gradually move towards, and finally occupy the Asian continent, and further influence the thermal depression over the Asian continent in the following summer.展开更多
利用1958—2001年NCEP/NCAR再分析资料,探讨了热带太平洋(100°E^60°W,10°S^10°N)10 m风场的时空变化特征及其与东亚大气环流的可能联系。结果表明:1)热带太平洋风场异常存在两种主模态,第一模态对应中西太平洋一致...利用1958—2001年NCEP/NCAR再分析资料,探讨了热带太平洋(100°E^60°W,10°S^10°N)10 m风场的时空变化特征及其与东亚大气环流的可能联系。结果表明:1)热带太平洋风场异常存在两种主模态,第一模态对应中西太平洋一致的西(东)风异常,关于赤道呈准对称分布,与ENSO(El Nio-Southern Oscillation)暖(冷)位相时风场的分布对应;第二模态则关于赤道呈反对称分布,西北太平洋存在显著的反气旋(气旋)式环流,中太平洋异常西风不再位于赤道上,而是南移到了10°S左右,对应ENSO暖(冷)位相向相反位相转换时的风场分布特征。2)两模态时间系数的主振荡周期不同,与ENSO循环的位相关系也不同。研究发现,当两模态呈正(负)位相分布时,贝加尔湖南侧(South to Lake Baikal,SLB)容易发生持续的高压(低压)异常环流。3)两模态与SLB异常环流的联系途径不同。第一模态正位相对应热带中东太平洋大范围暖海温引起的二极型Walker环流异常,SLB异常高压不仅能通过东亚沿岸北风和南海低槽的作用促进第一模态的前期发展,还对其后期维持起重要作用。负位相时,情况相反。该环流系统既与热带中东太平洋大范围垂直运动有关,还与邻近的中国东南沿海低层异常辐合有关;第二模态则对应热带西太平洋及东印度洋为主、大西洋为辅的暖海温引起的热带四极型Walker环流异常。此时热带西太平洋到东印度洋局地偏强的经圈Hadley环流可能是SLB异常环流维持的主要原因。展开更多
Experimental outputs of 11 Atmospheric Model Intercomparison Project (AMIP) models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to assess the atmospheric circulation anomaly over ...Experimental outputs of 11 Atmospheric Model Intercomparison Project (AMIP) models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to assess the atmospheric circulation anomaly over Northern Hemisphere induced by the anomalous rainfall over tropical Pacific and Indian Ocean during boreal winter.The analysis shows that the main features of the interannual variation of tropical rainfall anomalies,especially over the Central Pacific (CP) (5°S-5°N,175°E-135°W) and Indo-western Pacific (IWP) (20°S-20°N,110°-150°E) are well captured in all the CMIP5/AMIP models.For the IWP and western Indian Ocean (WIO) (10°S-10°N,45°-75°E),the anomalous rainfall is weaker in the 11 CMIP5/AMIP models than in the observation.During El Ni(n)o/La Ni(n)a mature phases in boreal winter,consistent with observations,there are geopotential height anomalies known as the Pacific North American (PNA) pattern and Indo-western Pacific and East Asia (IWPEA) pattern in the upper troposphere,and the northwestern Pacific anticyclone (cyclone) (NWPA) in the lower troposphere in the models.Comparison between the models and observations shows that the ability to simulate the PNA and NWPA pattern depends on the ability to simulate the anomalous rainfall over the CP,while the ability to simulate the IWPEA pattern is related to the ability to simulate the rainfall anomaly in the IWP and WIO,as the SST anomaly is same in AMIP experiments.It is found that the tropical rainfall anomaly is important in modeling the impact of the tropical Indo-Pacific Ocean on the extratropical atmospheric circulation anomaly.展开更多
基金This work was supported by the National Natural Science Foundation of China under contract No.40375034the Special Climate Project of China Meteorological Administration.
文摘As revealed by the observational study, there are more tropical cyclones generated over the western North Pacific from the early 1950s to the early 1970s in the 20th century and less tropical cyclones from the mid-1970s to the present. The decadal change of "tropical cyclones activities are closely related to the decadal changes of atmospheric general circulation in the troposphere, which provide favorable or unfavorable conditions for the formation of tropical cyclone. Furthermore, based on the simulation of corresponding atmospheric general circulation from a coupled climate model under the schemes of Intergovemmental Panel on Climate Change (IPCC),special report on emission scenarios (SRES) A2 and B2 emissions scenarios an outlook on the tropical cyclone frequency generated over the western North Pacific in the coming half century is presented. It is indicated that in response to the global climate change the general circulation of atmosphere would become unfavorable for the formation of tropical cyclone as a whole and the frequency of tropical cyclones formation would likely decrease by 5% within the next half century, although more tropical cyclones would appear during a short period in it.
文摘Using monthly mean National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data for the period 1958-1996, based on a new circulation index in the tropical western Pacific region, this paper investigates extreme winter circulation conditions in the northwestern Pacific and their evolution. The results show that the extreme winter circulation anomaly in the northwestern Pacific exhibits a strong association with those appearing in the high latitudes of the Northern Hemisphere including the northern Asian continent, part of the Barents Sea, and the northeastern Pacific. As the season progresses, an anticyclonic (cyclonic) circulation anomaly appearing in the northwestern Pacific gradually moves northeastwards and extends westwards. Its axis in the west-east direction is also stretched. Therefore, easterly (westerly) anomalies in the southern part of the anticyclonic (cyclonic) circulation anomaly continuously expand westwards to the peninsula of India. Therefore, the South Asian summer monsoon would be weaker (stronger). Simultaneously, another interesting phenomenon is the evolution of SLP anomalies. As the season progresses (from winter to the following summer), SLP anomalies originating from the tropical western Pacific gradually move towards, and finally occupy the Asian continent, and further influence the thermal depression over the Asian continent in the following summer.
文摘利用1958—2001年NCEP/NCAR再分析资料,探讨了热带太平洋(100°E^60°W,10°S^10°N)10 m风场的时空变化特征及其与东亚大气环流的可能联系。结果表明:1)热带太平洋风场异常存在两种主模态,第一模态对应中西太平洋一致的西(东)风异常,关于赤道呈准对称分布,与ENSO(El Nio-Southern Oscillation)暖(冷)位相时风场的分布对应;第二模态则关于赤道呈反对称分布,西北太平洋存在显著的反气旋(气旋)式环流,中太平洋异常西风不再位于赤道上,而是南移到了10°S左右,对应ENSO暖(冷)位相向相反位相转换时的风场分布特征。2)两模态时间系数的主振荡周期不同,与ENSO循环的位相关系也不同。研究发现,当两模态呈正(负)位相分布时,贝加尔湖南侧(South to Lake Baikal,SLB)容易发生持续的高压(低压)异常环流。3)两模态与SLB异常环流的联系途径不同。第一模态正位相对应热带中东太平洋大范围暖海温引起的二极型Walker环流异常,SLB异常高压不仅能通过东亚沿岸北风和南海低槽的作用促进第一模态的前期发展,还对其后期维持起重要作用。负位相时,情况相反。该环流系统既与热带中东太平洋大范围垂直运动有关,还与邻近的中国东南沿海低层异常辐合有关;第二模态则对应热带西太平洋及东印度洋为主、大西洋为辅的暖海温引起的热带四极型Walker环流异常。此时热带西太平洋到东印度洋局地偏强的经圈Hadley环流可能是SLB异常环流维持的主要原因。
基金supported by the Ministry of Science and Technology of China (National Basic Research Program of China Grant No. 2012CB955602)the National Natural Science Foundation of China (Grant Nos. 41176006 and 41221063)
文摘Experimental outputs of 11 Atmospheric Model Intercomparison Project (AMIP) models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to assess the atmospheric circulation anomaly over Northern Hemisphere induced by the anomalous rainfall over tropical Pacific and Indian Ocean during boreal winter.The analysis shows that the main features of the interannual variation of tropical rainfall anomalies,especially over the Central Pacific (CP) (5°S-5°N,175°E-135°W) and Indo-western Pacific (IWP) (20°S-20°N,110°-150°E) are well captured in all the CMIP5/AMIP models.For the IWP and western Indian Ocean (WIO) (10°S-10°N,45°-75°E),the anomalous rainfall is weaker in the 11 CMIP5/AMIP models than in the observation.During El Ni(n)o/La Ni(n)a mature phases in boreal winter,consistent with observations,there are geopotential height anomalies known as the Pacific North American (PNA) pattern and Indo-western Pacific and East Asia (IWPEA) pattern in the upper troposphere,and the northwestern Pacific anticyclone (cyclone) (NWPA) in the lower troposphere in the models.Comparison between the models and observations shows that the ability to simulate the PNA and NWPA pattern depends on the ability to simulate the anomalous rainfall over the CP,while the ability to simulate the IWPEA pattern is related to the ability to simulate the rainfall anomaly in the IWP and WIO,as the SST anomaly is same in AMIP experiments.It is found that the tropical rainfall anomaly is important in modeling the impact of the tropical Indo-Pacific Ocean on the extratropical atmospheric circulation anomaly.