期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
跨级融合门控自适应网络用于视网膜血管分割
1
作者 梁礼明 余洁 +2 位作者 陈鑫 雷坤 周珑颂 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第4期1097-1109,共13页
针对现有多数算法对浅层特征提取不足,导致分割结果中血管边界模糊、毛细血管欠分割且包含噪声等问题,提出一种跨级融合门控自适应网络。该网络中的密集门控通道变换模块,通过促进通道之间的竞争或协同关系充分提取浅层特征信息,避免浅... 针对现有多数算法对浅层特征提取不足,导致分割结果中血管边界模糊、毛细血管欠分割且包含噪声等问题,提出一种跨级融合门控自适应网络。该网络中的密集门控通道变换模块,通过促进通道之间的竞争或协同关系充分提取浅层特征信息,避免浅层粗粒度特征信息丢失;通过跨层次融合模块捕获各层跨维度交互信息,有效聚合多尺度上下文特征;采用双自适应特征融合方法有效引导相邻层次特征融合,抑制噪声。在公共数据集DRIVE、CHASEDB1和STARE上进行验证,结果表明:所提网络准确率分别为0.9652、0.9668和0.9695,F_(1)值分别为0.8544、0.8152和0.8412,在多个指标上均处于较高水平,优于现有先进算法。 展开更多
关键词 视网膜血管分割 密集门控通道变换 跨层次融合模块 双自适应特征融合 三重注意力模块
下载PDF
基于三重注意力的脑肿瘤图像分割网络 被引量:5
2
作者 韩阳 宋金淼 +1 位作者 薛安懿 段晓东 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第1期57-63,共7页
脑肿瘤图像分割问题是脑肿瘤临床诊断和治疗脑肿瘤疾病计算机辅助诊断的基础。针对脑肿瘤MRI图像分割网络深度过深和局部与全局特征信息联系匮乏导致图像分割精度降低等问题,提出一种基于三重注意力的脑肿瘤图像分割网络。首先,借鉴残... 脑肿瘤图像分割问题是脑肿瘤临床诊断和治疗脑肿瘤疾病计算机辅助诊断的基础。针对脑肿瘤MRI图像分割网络深度过深和局部与全局特征信息联系匮乏导致图像分割精度降低等问题,提出一种基于三重注意力的脑肿瘤图像分割网络。首先,借鉴残差结构,将原始图像分割网络结构的编码层和解码层中的卷积模块替换为深度残差模块,解决网络加深带来的梯度消失问题。其次,通过引入三重注意力模块,融合图像局部与全局特征信息,使网络更好地学习重要的图像特征信息,提升网络对脑肿瘤图像的分割精度。最后,在MICCAI比赛发布的BraTS脑肿瘤图像分割数据集上(包括335例患者病例),采用Dice系数等脑肿瘤评价指标进行性能评估。其中,脑肿瘤整体可达85.20%,脑肿瘤核心可达87.10%,增强脑肿瘤区域可达80.80%。实验结果显示,所提出的分割网络能够在不增加计算时间的前提下提高脑肿瘤MRI图像的分割性能。 展开更多
关键词 脑肿瘤分割 三重注意力模块 深度残差模块 MRI图像
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部