水体中存在的金属离子会干扰活性氯与有机物的反应,进而影响其消毒副产物的生成情况.本文采用紫外可见光谱、红外光谱以及超滤膜分级(UF)等表征方法,研究Cu^(2+)在氯化过程中对富里酸(FA)的形态结构和其消毒副产物——三卤甲烷生成能力(...水体中存在的金属离子会干扰活性氯与有机物的反应,进而影响其消毒副产物的生成情况.本文采用紫外可见光谱、红外光谱以及超滤膜分级(UF)等表征方法,研究Cu^(2+)在氯化过程中对富里酸(FA)的形态结构和其消毒副产物——三卤甲烷生成能力(THMs FP)的影响.结果显示,氯化过程中,Cu^(2+)对各个分子量范围FA的THMs FP均有促进作用,其中分子量范围在10—30 k Da的FA受Cu^(2+)影响最大.这主要是由于Cu^(2+)可与FA中酚、醇等含氧官能团发生络合作用,同时也通过该结构加速FA的水解,催化HOCl和HOBr与FA发生氧化和取代反应,从而促进THMs(尤其是溴代产物)的生成.展开更多
Addition of H2O2 has been employed to repress bromate formation during ozonation of bromide-containing source water. However, the addition of H2O2 will change the oxidation pathways of organic compounds due to the gen...Addition of H2O2 has been employed to repress bromate formation during ozonation of bromide-containing source water. However, the addition of H2O2 will change the oxidation pathways of organic compounds due to the generation of abundant hydroxyl radicals, which could affect the removal efficacy of trihalomethane precursors via the combination of ozone and biological activated carbon (O3-BAC). In this study, we evaluated the effects of H2O2 addition on bromate formation and trihalomethane formation potential (THMFP) reduction during treatment of bromide-containing (97.6-129.1 μg/L) source water by the O3-BAC process. At an ozone dose of 4.2 mg/L, an H2O2/O3 (g/g) ratio of over 1.0 was required to maintain the bromate concentration below 10.0 μg/L, while a much lower H2O2/O3 ratio was sufficient for a lower ozone dose. An H2O2/O3 (g/g) ratio below 0.3 should be avoided since the bromate concentration will increase with increasing H2O2 dose below this ratio. However, the addition of H2O2 at an ozone dose of 3.2 mg/L and an H2O2/O3 ratio of 1.0 resulted in a 43% decrease in THMFP removal when compared with the O3-BAC process. The optimum H2O2/O3 (g/g) ratio for balancing bromate and trihalomethane control was about 0.7-1.0. Fractionation of organic materials showed that the addition of H2O2 decreased the removal efficacy of the hydrophilic matter fraction of DOC by ozonation and increased the reactivity of the hydrophobic fractions during formation of trihalomethane, which may be the two main reasons responsible for the decrease in THMFP reduction efficacy. Overall, this study clearly demonstrated that it is necessary to balance bromate reduction and THMFP control when adopting an H2O2 addition strategy.展开更多
The reduction of mass and trihalomethane formation potential (THMFP) of dissolved organic matter (DOM) and its fractions from secondary effluent during laboratory-scale soil-aquifer treatment (SAT) soil columns were s...The reduction of mass and trihalomethane formation potential (THMFP) of dissolved organic matter (DOM) and its fractions from secondary effluent during laboratory-scale soil-aquifer treatment (SAT) soil columns were studied. Reduction in dissolved organic carbon (DOC), absorbance of ultraviolet light at 254 nm (UV-254), biodegradable dissolved organic carbon (BDOC) and nonbiodegradable dis- solved organic carbon (NBDOC) for the bulk DOM averaged 72.35%, 53.98%, 97.49% and 35.33% across the soil columns, respectively. Using XAD-8 and XAD-4 resins, DOM was fractionated into 3 fractions: hydrophobic acid (HPO-A), transphilic acid (TPI-A) and hydrophilic fraction (HPI). HPO-A was removed by 61.06%, TPI-A by 54.86% and HPI by 74.95% as DOC as a consequence of the laboratory-scale SAT, respectively. The reduction of THMFP from HPO-A, TPI-A and HPI was 27.24%, 26.24% and 36.08%, respectively. Proton nuclear magnetic resonance (1H-NMR) spectra revealed that the HPO-A isolated from the secondary effluent contained more aromatic functional groups than the corresponding TPI-A. Fourier-transform infrared (FT-IR) spectrum analysis illustrated that TPI-A had decreased hydrocarbon and increased aromatics content in the SAT columns. Specific ultraviolet light absorbance (SUVA) and specific THMFP for each DOM fraction increased across the soil columns and HPI exhibited greater increase in both than HPO-A and TPI-A. The most problematic THM precursor was found to be HPO-A with its high quantity present in recharged water and high chlorine reactivity.展开更多
Characterizing natural organic matter (NOM), particles and elements in different water treatment processes can give a useful information to optimize water treatment operations. In this article, transformations of pa...Characterizing natural organic matter (NOM), particles and elements in different water treatment processes can give a useful information to optimize water treatment operations. In this article, transformations of particles, metal elements and NOM in a pilot-scale water treatment plant were investigated by laser light granularity system, particle counter, glass-fiber membrane filtration, inductively coupled plasma-optical emission spectroscopy, ultra filtration and resin absorbents fractionation. The results showed that particles, NOM and trihalomethane formation precursors were removed synergistically by sequential treatment of different processes. Preozonation markedly changed the polarity and molecular weight of NOM, and it could be conducive to the following coagulation process through destabilizing particles and colloids; mid-ozonation enhanced the subsequent granular activated carbon (GAC) filtration process by decreasing molecular weight of organic matters. Coagulation-flotation and GAC were more efficient in removing fixed suspended solids and larger particles; while sand-filtration was more efficient in removing volatile suspended solids and smaller particles. Flotation performed better than sedimentation in terms of particle and NOM removal. The type of coagulant could greatly affect the performance of coagulation-flotation. Pre-hydrolyzed composite coagulant (HPAC) was superior to FeCl3 concerning the removals of hydrophobic dissolved organic carbon and volatile suspended solids. The leakages of flocs from sand-filtration and microorganisms from GAC should be mitigated to ensure the reliability of the whole treatment system.展开更多
文摘水体中存在的金属离子会干扰活性氯与有机物的反应,进而影响其消毒副产物的生成情况.本文采用紫外可见光谱、红外光谱以及超滤膜分级(UF)等表征方法,研究Cu^(2+)在氯化过程中对富里酸(FA)的形态结构和其消毒副产物——三卤甲烷生成能力(THMs FP)的影响.结果显示,氯化过程中,Cu^(2+)对各个分子量范围FA的THMs FP均有促进作用,其中分子量范围在10—30 k Da的FA受Cu^(2+)影响最大.这主要是由于Cu^(2+)可与FA中酚、醇等含氧官能团发生络合作用,同时也通过该结构加速FA的水解,催化HOCl和HOBr与FA发生氧化和取代反应,从而促进THMs(尤其是溴代产物)的生成.
基金supported by the National Natural Science Foundation of China (No. 50938007)the Funds for Major Science and Technology Program for Water Pollution Control and Treatment (No. 2012ZX07403-00202)the Special Co-construction Project of the Beijing Municipal Commission of Education
文摘Addition of H2O2 has been employed to repress bromate formation during ozonation of bromide-containing source water. However, the addition of H2O2 will change the oxidation pathways of organic compounds due to the generation of abundant hydroxyl radicals, which could affect the removal efficacy of trihalomethane precursors via the combination of ozone and biological activated carbon (O3-BAC). In this study, we evaluated the effects of H2O2 addition on bromate formation and trihalomethane formation potential (THMFP) reduction during treatment of bromide-containing (97.6-129.1 μg/L) source water by the O3-BAC process. At an ozone dose of 4.2 mg/L, an H2O2/O3 (g/g) ratio of over 1.0 was required to maintain the bromate concentration below 10.0 μg/L, while a much lower H2O2/O3 ratio was sufficient for a lower ozone dose. An H2O2/O3 (g/g) ratio below 0.3 should be avoided since the bromate concentration will increase with increasing H2O2 dose below this ratio. However, the addition of H2O2 at an ozone dose of 3.2 mg/L and an H2O2/O3 ratio of 1.0 resulted in a 43% decrease in THMFP removal when compared with the O3-BAC process. The optimum H2O2/O3 (g/g) ratio for balancing bromate and trihalomethane control was about 0.7-1.0. Fractionation of organic materials showed that the addition of H2O2 decreased the removal efficacy of the hydrophilic matter fraction of DOC by ozonation and increased the reactivity of the hydrophobic fractions during formation of trihalomethane, which may be the two main reasons responsible for the decrease in THMFP reduction efficacy. Overall, this study clearly demonstrated that it is necessary to balance bromate reduction and THMFP control when adopting an H2O2 addition strategy.
基金Supported by the National Basic Research Program of China (Grant No. 2004CB418505)
文摘The reduction of mass and trihalomethane formation potential (THMFP) of dissolved organic matter (DOM) and its fractions from secondary effluent during laboratory-scale soil-aquifer treatment (SAT) soil columns were studied. Reduction in dissolved organic carbon (DOC), absorbance of ultraviolet light at 254 nm (UV-254), biodegradable dissolved organic carbon (BDOC) and nonbiodegradable dis- solved organic carbon (NBDOC) for the bulk DOM averaged 72.35%, 53.98%, 97.49% and 35.33% across the soil columns, respectively. Using XAD-8 and XAD-4 resins, DOM was fractionated into 3 fractions: hydrophobic acid (HPO-A), transphilic acid (TPI-A) and hydrophilic fraction (HPI). HPO-A was removed by 61.06%, TPI-A by 54.86% and HPI by 74.95% as DOC as a consequence of the laboratory-scale SAT, respectively. The reduction of THMFP from HPO-A, TPI-A and HPI was 27.24%, 26.24% and 36.08%, respectively. Proton nuclear magnetic resonance (1H-NMR) spectra revealed that the HPO-A isolated from the secondary effluent contained more aromatic functional groups than the corresponding TPI-A. Fourier-transform infrared (FT-IR) spectrum analysis illustrated that TPI-A had decreased hydrocarbon and increased aromatics content in the SAT columns. Specific ultraviolet light absorbance (SUVA) and specific THMFP for each DOM fraction increased across the soil columns and HPI exhibited greater increase in both than HPO-A and TPI-A. The most problematic THM precursor was found to be HPO-A with its high quantity present in recharged water and high chlorine reactivity.
基金Project supported by the Hi-Tech Research and Development Program(863) of China (No. 2002AA00601140)the National Natural Science Foundation of China(No. 50578155, 20477054)
文摘Characterizing natural organic matter (NOM), particles and elements in different water treatment processes can give a useful information to optimize water treatment operations. In this article, transformations of particles, metal elements and NOM in a pilot-scale water treatment plant were investigated by laser light granularity system, particle counter, glass-fiber membrane filtration, inductively coupled plasma-optical emission spectroscopy, ultra filtration and resin absorbents fractionation. The results showed that particles, NOM and trihalomethane formation precursors were removed synergistically by sequential treatment of different processes. Preozonation markedly changed the polarity and molecular weight of NOM, and it could be conducive to the following coagulation process through destabilizing particles and colloids; mid-ozonation enhanced the subsequent granular activated carbon (GAC) filtration process by decreasing molecular weight of organic matters. Coagulation-flotation and GAC were more efficient in removing fixed suspended solids and larger particles; while sand-filtration was more efficient in removing volatile suspended solids and smaller particles. Flotation performed better than sedimentation in terms of particle and NOM removal. The type of coagulant could greatly affect the performance of coagulation-flotation. Pre-hydrolyzed composite coagulant (HPAC) was superior to FeCl3 concerning the removals of hydrophobic dissolved organic carbon and volatile suspended solids. The leakages of flocs from sand-filtration and microorganisms from GAC should be mitigated to ensure the reliability of the whole treatment system.