In computer aided geometric design(CAGD),the Bernstein-Bézier system for polynomial space including the triangular domain is an important tool for modeling free form shapes.The Bernstein-like bases for other spac...In computer aided geometric design(CAGD),the Bernstein-Bézier system for polynomial space including the triangular domain is an important tool for modeling free form shapes.The Bernstein-like bases for other spaces(trigonometric polynomial,hyperbolic polynomial,or blended space) has also been studied.However,none of them was extended to the triangular domain.In this paper,we extend the linear trigonometric polynomial basis to the triangular domain and obtain a new Bernstein-like basis,which is linearly independent and satisfies positivity,partition of unity,symmetry,and boundary represen-tation.We prove some properties of the corresponding surfaces,including differentiation,subdivision,convex hull,and so forth.Some applications are shown.展开更多
This article considers universal optimality of digital nets and lattice designs in a regression model. Based on the equivalence theorem for matrix means and majorization theory,the necessary and sufficient conditions ...This article considers universal optimality of digital nets and lattice designs in a regression model. Based on the equivalence theorem for matrix means and majorization theory,the necessary and sufficient conditions for lattice designs being φp-and universally optimal in trigonometric function and Chebyshev polynomial regression models are obtained. It is shown that digital nets are universally optimal for both complete and incomplete Walsh function regression models under some specified conditions,and are also universally optimal for complete Haar wavelet regression models but may not for incomplete Haar wavelet regression models.展开更多
基金supported by the National Natural Science Foundation of China (Nos.60773179,60933008,and 60970079)the National Basic Research Program (973) of China (No.2004CB318000)the China Hungary Joint Project (No.CHN21/2006)
文摘In computer aided geometric design(CAGD),the Bernstein-Bézier system for polynomial space including the triangular domain is an important tool for modeling free form shapes.The Bernstein-like bases for other spaces(trigonometric polynomial,hyperbolic polynomial,or blended space) has also been studied.However,none of them was extended to the triangular domain.In this paper,we extend the linear trigonometric polynomial basis to the triangular domain and obtain a new Bernstein-like basis,which is linearly independent and satisfies positivity,partition of unity,symmetry,and boundary represen-tation.We prove some properties of the corresponding surfaces,including differentiation,subdivision,convex hull,and so forth.Some applications are shown.
基金supported by National Natural Science Foundation of China (Grant No. 10671007)National Basic Research Program of China (Grant No. 2007CB512605)+2 种基金Hong Kong Research Grants Council (Grant No. RGC/HKBU/2030/99P)Hong Kong Baptist University (Grant No. FRG/00-01/II-62)US National Science Foundation (Grant No. NSF-DMS-0713848)
文摘This article considers universal optimality of digital nets and lattice designs in a regression model. Based on the equivalence theorem for matrix means and majorization theory,the necessary and sufficient conditions for lattice designs being φp-and universally optimal in trigonometric function and Chebyshev polynomial regression models are obtained. It is shown that digital nets are universally optimal for both complete and incomplete Walsh function regression models under some specified conditions,and are also universally optimal for complete Haar wavelet regression models but may not for incomplete Haar wavelet regression models.