BACKGROUND:Triggering receptor expressed on myeloid cells-1 (TREM-1) in the intestine was upregulated and correlated with disease activity in inflammatory bowel diseases. Membrane- bound TREM-1 protein is increased...BACKGROUND:Triggering receptor expressed on myeloid cells-1 (TREM-1) in the intestine was upregulated and correlated with disease activity in inflammatory bowel diseases. Membrane- bound TREM-1 protein is increased in the pancreas, liver and kidneys of patients with severe acute pancreatitis (SAP), suggesting that TREM-1 may act as an important mediator of inflammation and subsequent extra-pancreatic organ injury. This study aimed to investigate the relationship between the expression of TREM-1 in intestinal tissue and intestinal barrier dysfunction in SAP. METHODS: Sixty-four male Wistar rats were randomly divided into a sham operation group (SO group, n=32) and a SAP group (n=32). A SAP model was established by retrograde injection of 5% sodium deoxycholate into the bile-pancreatic duct. Specimens were taken from blood and intestinal tissue 2, 6, 12, and 48 hours after operation respectively. The levels of D-lactate, diamine oxidase (DAO) and endotoxin in serum were measured using an improved spectro-photometric method. The expression levels of TREM-1, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) mRNA in terminal ileum were detected by real-time reverse transcription-polymerase chain reaction (RT-PCR). Specimens of the distal ileum were taken to determine pathological changes by a validated histology score. The serum levels of D-lactate, DAO and endotoxin were significantly increased in each subgroup of SAP compared with the SO group (P〈0.01, P〈0.05). The expression levels of TREM-1, IL-1β and TNF-a mRNA in the terminal ileum in each subgroup of SAP were significantly higher than those in the SO group (P〈0.01, P〈0.05). The expression level of TREM-lmRNA was positively correlated with IL-1βand TNF-α mRNA (r=0.956, P=0.044; r=0.986, P=0.015), but the correlation was not found between IL-1β mRNA and TNF-a mRNA (P=0.133). Compared to the SO group, the pathological changes were aggravated significantly in the SAP group. CONCLUSIONS�展开更多
Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landsli...Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas.展开更多
基金The study was supported by a grant from the National Natural Science Foundation of China (81070287).
文摘BACKGROUND:Triggering receptor expressed on myeloid cells-1 (TREM-1) in the intestine was upregulated and correlated with disease activity in inflammatory bowel diseases. Membrane- bound TREM-1 protein is increased in the pancreas, liver and kidneys of patients with severe acute pancreatitis (SAP), suggesting that TREM-1 may act as an important mediator of inflammation and subsequent extra-pancreatic organ injury. This study aimed to investigate the relationship between the expression of TREM-1 in intestinal tissue and intestinal barrier dysfunction in SAP. METHODS: Sixty-four male Wistar rats were randomly divided into a sham operation group (SO group, n=32) and a SAP group (n=32). A SAP model was established by retrograde injection of 5% sodium deoxycholate into the bile-pancreatic duct. Specimens were taken from blood and intestinal tissue 2, 6, 12, and 48 hours after operation respectively. The levels of D-lactate, diamine oxidase (DAO) and endotoxin in serum were measured using an improved spectro-photometric method. The expression levels of TREM-1, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) mRNA in terminal ileum were detected by real-time reverse transcription-polymerase chain reaction (RT-PCR). Specimens of the distal ileum were taken to determine pathological changes by a validated histology score. The serum levels of D-lactate, DAO and endotoxin were significantly increased in each subgroup of SAP compared with the SO group (P〈0.01, P〈0.05). The expression levels of TREM-1, IL-1β and TNF-a mRNA in the terminal ileum in each subgroup of SAP were significantly higher than those in the SO group (P〈0.01, P〈0.05). The expression level of TREM-lmRNA was positively correlated with IL-1βand TNF-α mRNA (r=0.956, P=0.044; r=0.986, P=0.015), but the correlation was not found between IL-1β mRNA and TNF-a mRNA (P=0.133). Compared to the SO group, the pathological changes were aggravated significantly in the SAP group. CONCLUSIONS�
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021QD032)。
文摘Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas.