期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
Flexible PDMS-based triboelectric nanogenerator for instantaneous force sensing and human joint movement monitoring 被引量:21
1
作者 Junbin Yu Xiaojuan Hou +5 位作者 Min Cui Shuzheng Shi Jian He Yawei Sun Chao Wang Xiujian Chou 《Science China Materials》 SCIE EI CSCD 2019年第10期1423-1432,共10页
Flexible wearable sensors with excellent electric response and self-powered capability have become an appealing hotspot for personal healthcare and human-machine interfaces.Here,based on triboelectric nanogenerator(TE... Flexible wearable sensors with excellent electric response and self-powered capability have become an appealing hotspot for personal healthcare and human-machine interfaces.Here,based on triboelectric nanogenerator(TENG),a flexible self-powered tactile sensor composed of micro-frustum-arrays-structured polydimethylsiloxane(PDMS)film/copper(Cu)electrodes,and poly(vinylidenefluoride-trifluoroethylene)(P(VDF-TrFE))nanofibers has been demonstrated.The TENG-based self-powered tactile sensor can generate electrical signals through the contact-separation process of two triboelectric layers under external mechanical stimuli.Due to the uniform and controllable micro-frustum-arrays structure fabricated by micro-electro-mechanical system(MEMS)process and the P(VDF-TrFE)nanofibers fabricated by electrostatic spinning,the flexible PDMS-based sensor presents high sensitivity of 2.97 V kPa^-1,stability of 40,000 cycles(no significant decay),response time of 60 ms at 1 Hz,low detection pressure of a water drop(~4 Pa,35 mg)and good linearity of 0.99231 in low pressure region.Since the PDMS film presents ultra-flexibility and excellent-biocompatibility,the sensor can be comfortably attached on human body.Furthermore,the tactile sensor can recognize various types of human body movements by the corresponding electrical signals.Therefore,the as-prepared TENGs are potential on the prospects of gesture detection,health assessment,human-machine interfaces and so on. 展开更多
关键词 SELF-POWERED triboelectric nanogenerator wearable sensor MEMS process personal healthcare
原文传递
Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring 被引量:13
2
作者 Ran Cao diaona Wang +9 位作者 Shuyu Zhao Wei Yang Zuqing Yuan Yingying Yin Xinyu Du Nian-Wu Li Xiuling Zhang Xiuyan Li Zhong Lin Wang Congju Li 《Nano Research》 SCIE EI CAS CSCD 2018年第7期3771-3779,共9页
Scientific and commercial advances have set high requirements for wearable electronics. However, the power supply, breathability, and mass production of wearable electronics still have many challenges that need to be ... Scientific and commercial advances have set high requirements for wearable electronics. However, the power supply, breathability, and mass production of wearable electronics still have many challenges that need to be overcome. In this study, a self-powered nanofiber-based triboelectric sensor (SNTS) was fabricated by batch-scale fabrication technologies using electrospinning and screen-printing for health monitoring via respiratory monitoring. Typically, an arch structural SNTS is assembled by a nanofiber membrane and a Ag nanoparticle electrode. The pile of nanofibers and the conductive network of Ag nanoparticles ensure a gas channel across the whole device. The gas permeability of the SNTS was as high as 6.16 mm/s, which has overwhelming advantages when compared with commonly used wearable devices composed of air-tight cast films. Due to the softness of the nanofiber membrane, the SNTS showed excellent electronic output performance irrespective of whether it was bent, twisted, or folded. The superior properties, such as breathability, skin-friendliness, self-power, and batch fabrication of SNTS offer huge potential for their application in healthcare monitoring and multifunctional intelligent systems. 展开更多
关键词 SELF-POWERED nanofiber membrane air-permissive triboelectric sensor screen-print health monitoring
原文传递
A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor 被引量:10
3
作者 Jie Hu Xianjie Pu +5 位作者 Hongmei Yang Qixuan Zeng Qian Tang Dazhi Zhang Chenguo Hu Yi Xi 《Nano Research》 SCIE EI CAS CSCD 2019年第12期3018-3023,共6页
Triboelectric nanogenerators(TENGs)have been developed rapidly into an efficient wind energy collection equipment.Reducing the frictionwear and energy loss in breeze energy collection is a research direction worthy of... Triboelectric nanogenerators(TENGs)have been developed rapidly into an efficient wind energy collection equipment.Reducing the frictionwear and energy loss in breeze energy collection is a research direction worthy of attention.Herein,a flutter-effect-based triboelectricnanogen erator(FE-TENG)is designed to collect the breeze energy at low wind speed from arbitrary directions.Distinguishing from previouswind-driven TENGs,the wind-driven part of this device is separated from the TENG units,which not only avoids the wear of friction layerscaused by direct wind contact but also reduces the energy loss,therefore,relatively stable electric outputs are obtained with Voc-281 V,Isc-13.4μA,Qsc-143 nC,and output power-4 mW at the wind speed of 4.5 m/s,respectively.In addition,a real-time wind speed monitoringsystem based on LabVIEW software with high sen sitivity and fast response to wind is achieved relying on the excellent linear relation shipbetween wind speed and electrical output signal.Furthermore,it has been successfully applied as power sources for portable electronics,about 170 commercial light-emitting devices(LEDs)are lighted and a digital watch is successfully driven at the wind speed of 2.9 m/s.This worknot only provides a new structure and idea for the future collection of clean and sustainable breeze energy from arbitrary directions but also hasgreat potential in the field of self-powered systems. 展开更多
关键词 FLUTTER EFFECT triboelectric NANOGENERATOR ARBITRARY DIRECTIONS wind speed sensor
原文传递
用于运动状态监测的纸基柔性摩擦电传感器 被引量:5
4
作者 杨云 薛淑萍 +2 位作者 王子恒 贾磊 蔡婷婷 《传感器与微系统》 CSCD 北大核心 2024年第4期165-168,共4页
为解决柔性摩擦电传感器制备流程复杂、成本高、不够环保等问题,设计了一种基于纸基导电银浆的低成本柔性摩擦电传感器。当外部压力由5 N增大至50 N时,其输出电压和输出电流逐渐增大,在频率为1 Hz、幅值为50 N的外部压力作用下,输出电... 为解决柔性摩擦电传感器制备流程复杂、成本高、不够环保等问题,设计了一种基于纸基导电银浆的低成本柔性摩擦电传感器。当外部压力由5 N增大至50 N时,其输出电压和输出电流逐渐增大,在频率为1 Hz、幅值为50 N的外部压力作用下,输出电压的峰值约为7.52 V。当外部压强在17~173 kPa的范围内变化时,输出电压峰值与压强呈分段线性关系。当外部压力的频率变化时,输出电压保持不变。结果表明,该传感器压力传感性能良好。当应用于运动传感中时,该传感器能够感知肘关节、腕关节的弯曲角度,并能有效区分走、快走、跑3种运动类型以及踮脚、深蹲、抱腹跳3种健身动作,计算人体行走频率与健身动作次数,在人体运动状态监测等领域具有良好的应用价值。 展开更多
关键词 摩擦电传感器 纸基传感器 导电银浆 柔性 运动传感
下载PDF
Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensor 被引量:9
5
作者 Limin Zhang Fei Xue +3 位作者 Weiming Du Changbao Han Chi Zhang Zhonglin Wang 《Nano Research》 SCIE EI CAS CSCD 2014年第8期1215-1223,共9页
The triboelectric nanogenerator (TENG), based on the well-known triboelectric effect and electrostatic induction effect, has been proven to be a simple, cost effective approach for self-powered systems to convert am... The triboelectric nanogenerator (TENG), based on the well-known triboelectric effect and electrostatic induction effect, has been proven to be a simple, cost effective approach for self-powered systems to convert ambient mechanical energy into electricity. We report a flexible and transparent paper-based triboelectric nanogenerator (PTENG) consisting of an indium tin oxide (ITO) film and a polyethylene terephthalate (PET) film as the triboelectric surfaces, which not only acts as an energy supply but also as a self-powered active sensor. It can harvest kinetic energy when the sheets of paper come into contact, bend or slide relative to one another by a combination of vertical contact-separation mode and lateral sliding mode. In addition, we also integrate grating-structured PTENGs into a book as a self-powered anti-theft sensor. The mechanical agitation during handling the book pages can be effectively converted into an electrical output to either drive a commercial electronic device or trigger a warning buzzer. Furthermore, different grating-structures on each page produce different numbers of output peaks by sliding relative to one another, which can accurately act as a page mark and record the number of pages turned. This work is a significant step forward in self-powered paper-based devices. 展开更多
关键词 paper-based triboelectric nanogenerator self-powered systems anti-theft sensor position indium tin oxide
原文传递
Stretchable on-skin touchless screen sensor enabled by ionic hydrogel 被引量:5
6
作者 Tianxing Feng Dan Ling +7 位作者 Chaoyue Li Wentao Zheng Shichuan Zhang Chang Li Artem Emel’yanov Alexander S.Pozdnyakov Lijun Lu Yanchao Mao 《Nano Research》 SCIE EI CSCD 2024年第5期4462-4470,共9页
Screen sensors are the most commonly used human-machine interfaces in our everyday life,which have been extensively applied in personal electronics like cellphones.Touchless screen sensors are attracting growing inter... Screen sensors are the most commonly used human-machine interfaces in our everyday life,which have been extensively applied in personal electronics like cellphones.Touchless screen sensors are attracting growing interest due to their distinct advantages of high interaction freedom,comfortability,and hand hygiene.However,the material compositions of current touchless screen sensors are rigid and fragile,hardly meeting the needs of wearable and stretchable on-skin electronics development.Additionally,these touchless screen sensors are also restricted by high power consumption,limited gesture types of recognition,and the requirement of light conditions.Here,we report a stretchable on-skin touchless screen sensor(OTSS)enabled by an ionic hydrogel-based triboelectric nanogenerator(TENG).Compared with current touchless screen sensors,the OTSS is stretchable,self-powered,and competent to recognize diverse gestures by making use of charges naturally carried on fingers without the need of sufficient light conditions.An on-skin noncontact screen operating system is further demonstrated on the basis of the OTSS,which could unlock a cellphone interface in touchless operation mode on the human skin.This work for the first time introduces the on-skin touchless concept to screen sensors and offers a direction to develop new-generation screen sensors for future cellphones and personal electronics. 展开更多
关键词 human-machine interface STRETCHABLE ionic hydrogel triboelectric nanogenerator self-powered sensor
原文传递
Multidiscipline Applications of Triboelectric Nanogenerators for the Intelligent Era of Internet of Things 被引量:7
7
作者 Xiaole Cao Yao Xiong +3 位作者 Jia Sun Xiaoyin Xie Qijun Sun Zhong Lin Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期252-292,共41页
In the era of 5G and the Internet of things(IoTs),vari-ous human-computer interaction systems based on the integration of triboelectric nanogenerators(TENGs)and IoTs technologies dem-onstrate the feasibility of sustai... In the era of 5G and the Internet of things(IoTs),vari-ous human-computer interaction systems based on the integration of triboelectric nanogenerators(TENGs)and IoTs technologies dem-onstrate the feasibility of sustainable and self-powered functional systems.The rapid development of intelligent applications of IoTs based on TENGs mainly relies on supplying the harvested mechanical energy from surroundings and implementing active sensing,which have greatly changed the way of human production and daily life.This review mainly introduced the TENG applications in multidisci-pline scenarios of IoTs,including smart agriculture,smart industry,smart city,emergency monitoring,and machine learning-assisted artificial intelligence applications.The challenges and future research directions of TENG toward IoTs have also been proposed.The exten-sive developments and applications of TENG will push forward the IoTs into an energy autonomy fashion. 展开更多
关键词 triboelectric nanogenerator Self-powered sensor Internet of things Artificial intelligence Machine learning
下载PDF
Magnetic Array Assisted Triboelectric Nanogenerator Sensor for Real‑Time Gesture Interaction 被引量:8
8
作者 Ken Qin Chen Chen +7 位作者 Xianjie Pu Qian Tang Wencong He Yike Liu Qixuan Zeng Guanlin Liu Hengyu Guo Chenguo Hu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期168-176,共9页
In human-machine interaction,robotic hands are useful in many scenarios.To operate robotic hands via gestures instead of handles will greatly improve the convenience and intuition of human-machine interaction.Here,we ... In human-machine interaction,robotic hands are useful in many scenarios.To operate robotic hands via gestures instead of handles will greatly improve the convenience and intuition of human-machine interaction.Here,we present a magnetic array assisted sliding triboelectric sensor for achieving a real-time gesture interaction between a human hand and robotic hand.With a finger’s traction movement of flexion or extension,the sensor can induce positive/negative pulse signals.Through counting the pulses in unit time,the degree,speed,and direction of finger motion can be judged in realtime.The magnetic array plays an important role in generating the quantifiable pulses.The designed two parts of magnetic array can transform sliding motion into contact-separation and constrain the sliding pathway,respectively,thus improve the durability,low speed signal amplitude,and stability of the system.This direct quantization approach and optimization of wearable gesture sensor provide a new strategy for achieving a natural,intuitive,and real-time human-robotic interaction. 展开更多
关键词 Sliding triboelectric sensor Magnetic array GESTURE Real-time Human-machine interaction
下载PDF
摩擦发电微流体传感器特性的有限元仿真研究 被引量:8
9
作者 王靖宵 贾月梅 冀健龙 《中国测试》 CAS 北大核心 2020年第6期89-94,共6页
近年来,摩擦发电技术被广泛应用于信号传感领域,尤其是对封闭管道中液体输运的信号监测。为阐释基于摩擦发电效应的微流体传感器的工作原理,通过有限元仿真模拟,研究这种微流体传感器的信号产生过程及其传感特性,并通过实验测得该传感... 近年来,摩擦发电技术被广泛应用于信号传感领域,尤其是对封闭管道中液体输运的信号监测。为阐释基于摩擦发电效应的微流体传感器的工作原理,通过有限元仿真模拟,研究这种微流体传感器的信号产生过程及其传感特性,并通过实验测得该传感器在检测微流体运动时输出的交流电信号,验证仿真模型的正确性。另外在仿真模拟中,通过控制变量法,探讨基于摩擦发电效应的微流体传感器的传感性能随介电层厚度、电极间距及液体长度与电极宽度之比的变化规律。结果表明这种微流体传感器的输出信号强度随介电层厚度的增大而减小,而随电极间距的增大表现出先增大后减小的趋势,随液体长度与电极宽度的比值变化呈先增大后保持恒定的变化规律,该项研究工作将为研制更高传感性能的微流体传感器提供一定理论指导。 展开更多
关键词 摩擦发电效应 微流体 传感器 有限元方法
下载PDF
Silk Fibroin Based Conductive Film for Multifunctional Sensing and Energy Harvesting 被引量:7
10
作者 Xiaoyu Dong iang Liu +2 位作者 Sai Liu Ronghui Wu Liyun Ma 《Advanced Fiber Materials》 SCIE EI 2022年第4期885-893,共9页
Development of biomaterial based flexible electronics has got intensive attention owing to the potential applications in the wearable and epidermal devices.Silk fibroin,as a natural textile material with excellent per... Development of biomaterial based flexible electronics has got intensive attention owing to the potential applications in the wearable and epidermal devices.Silk fibroin,as a natural textile material with excellent performance,has been widely concerned by industry and academy.However,the property of electrical insulation limits his development in the field of flexible electronics.In this paper,a regenerated silk fibroin/carbon nanotube(RSF/CNT)conductive film has been successfully fabricated and applied in flexible capacitive-type pressure sensor and wearable triboelectric nanogenerator by a facile method.The electrical conductivity and mechanical property of RSF/CNT film was optimized by investigating with different composite ratio from 10 to 90%(W_(RSF)/W_(CNT)).The RSF/CNT film has a good photothermal response and electric heating performance.We furtherly demonstrated that the RSF/CNT based sensor can be used as epidermal self-powered sensor for multifunction human motion monitoring and Morse code compilation.The observed research results have shown that the RSF/CNT film has a wide range of potential application prospects in the wearable electronics field. 展开更多
关键词 Silk fibroin based material Composite conductive film Capacitive-type pressure sensor triboelectric nanogenerator Self-powered sensor
原文传递
通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用 被引量:7
11
作者 张嘉伟 姚鸿博 +5 位作者 张远征 蒋伟博 吴永辉 张亚菊 敖天勇 郑海务 《物理学报》 SCIE EI CAS CSCD 北大核心 2022年第7期378-402,共25页
在物联网时代,如何开发一种可持续供电、部署方便且使用灵活的智能传感器系统成为了亟待解决的难题..以麦克斯韦位移电流作为驱动力的摩擦纳米发电机(triboelectric nanogenerator,TENG)可直接将机械刺激转化为电信号,因此可作为自驱动... 在物联网时代,如何开发一种可持续供电、部署方便且使用灵活的智能传感器系统成为了亟待解决的难题..以麦克斯韦位移电流作为驱动力的摩擦纳米发电机(triboelectric nanogenerator,TENG)可直接将机械刺激转化为电信号,因此可作为自驱动传感器使用.基于TENG的传感器拥有结构简单、瞬时功率密度高等优点,为构建智能传感器系统提供了重要手段.同时,机器学习作为一种成本低、开发周期短、数据处理能力和预测能力强的技术,对TENG产生的大量电学信号处理效果显著.本文梳理了基于TENG的传感器系统通过采用机器学习技术进行信号处理和智能识别的最新研究进展,从交通安全、环境监测、信息安全、人机交互和健康运动检测等角度出发,概述了该研究方向的技术特点与研究现状.最后,深入讨论了该领域当前存在的挑战和未来的发展趋势,并分析了未来如何改进以期开拓更广阔的应用空间.我们相信机器学习技术与TENG传感器的结合将推动未来智能传感器网络的快速发展. 展开更多
关键词 物联网 摩擦纳米发电机 传感器 机器学习
下载PDF
Self-powered pressure sensor for ultra-wide range pressure detection 被引量:5
12
作者 Kaushik Parida Venkateswarlu Bhavanasi +2 位作者 Vipin Kumar Ramaraju Bendi Pooi See Lee 《Nano Research》 SCIE EI CAS CSCD 2017年第10期3557-3570,共14页
The next generation of sensors should be self-powered, maintenance-free, precise, and have wide-ranging sensing abilities. Despite extensive research and development in the field of pressure sensors, the sensitivity o... The next generation of sensors should be self-powered, maintenance-free, precise, and have wide-ranging sensing abilities. Despite extensive research and development in the field of pressure sensors, the sensitivity of most pressure sensors declines significantly at higher pressures, such that they are not able to detect a wide range of pressures with a uniformly high sensitivity. In this work, we demonstrate a single-electrode triboelectric pressure sensor, which can detect a wide range of pressures from 0.05 to 600 kPa with a high degree of sensitivity across the entire range by utilizing the synergistic effects of the piezoelectric polarization and triboelectric surface charges of self-polarized polyvinyldifluoride-trifluoroethylene (P(VDF-TrFE)) sponge. Taking into account both this wide pressure range and the sensitivity, this device exhibits the best performance relative to that of previously reported self-powered pressure sensors. This achievement facilitates wide-range pressure detection for a broad spectrum of applications, ranging from simple human touch, sensor networks, smart robotics, and sports applications, thus paving the way forward for the realization of next-generation sensing devices. Moreover, this work addresses the critical issue of saturation pressure in triboelectric nanogenerators and provides insights into the role of the surface charge on a piezoelectric polymer when used in a triboelectric nanogenerator. 展开更多
关键词 SELF-POWERED triboelectric PIEZOELECTRIC NANOGENERATOR pressure sensor
原文传递
Advances in Graphene‑Based Electrode for Triboelectric Nanogenerator
13
作者 Bin Xie Yuanhui Guo +7 位作者 Yun Chen Hao Zhang Jiawei Xiao Maoxiang Hou Huilong Liu Li Ma Xin Chen Chingping Wong 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期378-403,共26页
With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation techno... With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation technology.Triboelectric nanogenerator(TENG)technology can convert small mechanical energy into electricity,which is expected to address this problem.As the core component of TENG,the choice of electrode materials significantly affects its performance.Traditional metal electrode materials often suffer from problems such as durability,which limits the further application of TENG.Graphene,as a novel electrode material,shows excellent prospects for application in TENG owing to its unique structure and excellent electrical properties.This review systematically summarizes the recent research progress and application prospects of TENGs based on graphene electrodes.Various precision processing methods of graphene electrodes are introduced,and the applications of graphene electrode-based TENGs in various scenarios as well as the enhancement of graphene electrodes for TENG performance are discussed.In addition,the future development of graphene electrode-based TENGs is also prospectively discussed,aiming to promote the continuous advancement of graphene electrode-based TENGs. 展开更多
关键词 triboelectric nanogenerator Precision processing Graphene electrode Self-powered sensor
Integrative square-grid triboelectric nanogenerator as a vibrational energy harvester and impulsive force sensor 被引量:4
14
作者 Chuan He Weijun Zhu +6 位作者 Guang Qin Gu Tao Jiang Liang Xu Bao Dong Chen Chang Bao Han Dichen Li Zhong Lin Wang 《Nano Research》 SCIE EI CAS CSCD 2018年第2期1157-1164,共8页
A square-grid triboelectric nanogenerator (SG-TENG) is demonstrated for harvesting vibrational energy and sensing impulsive forces. Each square of the three-dimensional (3D)-printed square grid is filled with an a... A square-grid triboelectric nanogenerator (SG-TENG) is demonstrated for harvesting vibrational energy and sensing impulsive forces. Each square of the three-dimensional (3D)-printed square grid is filled with an aluminum (A1) ball. The grid structure allows the SG-TENG to harvest vibrational energy over a broad bandwidth and operate at different vibrational angles. The most striking feature of the SG-TENG is its ability of being scaled and integrated. After connecting two SG-TENGs in parallel, the open-circuit voltage and short-circuit current are significantly increased over the full vibrational frequency range. Being integrated with a table tennis racket, the SG-TENG can harvest the vibrational energy from hitting a ping pong ball using the racket, where a direct hit by the racket generates an average output voltage of 10,9 ~ 0.6 V and an average output current of 0.09 ± 0.02 boA. Moreover, the SG-TENG integrated into a focus mitt can be used in various combat sports, such as boxing and taekwondo, to monitor the frequency and magnitude of the punches or kicks from boxers and other practitioners. The collected data allow athletes to monitor their status and improve their performance skills. This work demonstrates the enormous potential of the SG-TENG in energy harvesting and sensing applications. 展开更多
关键词 square grid triboelectric nanogenerator vibration sensor
原文传递
Compliant Iontronic Triboelectric Gels with Phase-Locked Structure Enabled by Competitive Hydrogen Bonding
15
作者 Guoli Du Yuzheng Shao +11 位作者 Bin Luo Tao Liu Jiamin Zhao Ying Qin Jinlong Wang Song Zhang Mingchao Chi Cong Gao Yanhua Liu Chenchen Cai Shuangfei Wang Shuangxi Nie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期180-194,共15页
Rapid advancements in flexible electronics technology propel soft tactile sensing devices toward high-level biointegration,even attaining tactile perception capabilities surpassing human skin.However,the inherent mech... Rapid advancements in flexible electronics technology propel soft tactile sensing devices toward high-level biointegration,even attaining tactile perception capabilities surpassing human skin.However,the inherent mechanical mismatch resulting from deficient biomimetic mechanical properties of sensing materials poses a challenge to the application of wearable tactile sensing devices in human-machine interaction.Inspired by the innate biphasic structure of human subcutaneous tissue,this study discloses a skin-compliant wearable iontronic triboelectric gel via phase separation induced by competitive hydrogen bonding.Solvent-nonsolvent interactions are used to construct competitive hydrogen bonding systems to trigger phase separation,and the resulting soft-hard alternating phase-locked structure confers the iontronic triboelectric gel with Young’s modulus(6.8-281.9 kPa)and high tensile properties(880%)compatible with human skin.The abundance of reactive hydroxyl groups gives the gel excellent tribopositive and self-adhesive properties(peel strength>70 N m^(−1)).The self-powered tactile sensing skin based on this gel maintains favorable interface and mechanical stability with the working object,which greatly ensures the high fidelity and reliability of soft tactile sensing signals.This strategy,enabling skin-compliant design and broad dynamic tunability of the mechanical properties of sensing materials,presents a universal platform for broad applications from soft robots to wearable electronics. 展开更多
关键词 triboelectric nanogenerator CELLULOSE triboelectric gel Self-powered sensor Energy harvesting
下载PDF
3D interlocked all-textile structured triboelectric pressure sensor for accurately measuring epidermal pulse waves in amphibious environments 被引量:1
16
作者 Shaobo Si Chenchen Sun +5 位作者 Yufen Wu Jingjing Li Han Wang Yinggang Lin Jin Yang Zhong Lin Wang 《Nano Research》 SCIE EI CSCD 2024年第3期1923-1932,共10页
The performance degradation and even damage of the e-textiles caused by sweat,water,or submersion during all-weather health monitoring are the main reasons that e-textiles have not been commercialized and routinized s... The performance degradation and even damage of the e-textiles caused by sweat,water,or submersion during all-weather health monitoring are the main reasons that e-textiles have not been commercialized and routinized so far.Herein,we developed an amphibious,high-performance,air-permeable,and comfortable all-textile triboelectric sensor for continuous and precise measurement of epidermal pulse waves during full-day activities.Based on the principle of preparing gas by acid-base neutralization reaction,a one-piece preparation process of amphibious conductive yarn(ACY)with densely porous structures is proposed.An innovative three-dimensional(3D)interlocking fabric knitted from ACYs(0.6 mm in diameter)and polytetrafluoroethylene yarns exhibit high sensitivity(0.433 V·kPa^(-1)),wide bandwidth(up to 10 Hz),and stability(>30,000 cycles).With these benefits,98.8%agreement was achieved between wrist pulse waves acquired by the sensor and a high-precision laser vibrometer.Furthermore,the polytetrafluoroethylene yarn with good compression resilience provides sufficient mechanical support for the contact separation of the ACYs.Meanwhile,the unique skeletonized design of the 3D interlocking structure can effectively relieve the water pressure on the sensor surface to obtain stable and accurate pulse waves(underwater depth of 5 cm).This achievement represents an important step in improving the practicality of e-textiles and early diagnosis of cardiovascular diseases. 展开更多
关键词 triboelectric pressure sensor amphibious fabric interlocking fabric pulse wave measurement one-piece preparation method
原文传递
密封式可穿戴摩擦电传感器件的制备与性能优化 被引量:5
17
作者 张瑶 白志青 +1 位作者 李杰聪 郭建生 《东华大学学报(自然科学版)》 CAS 北大核心 2022年第2期40-47,共8页
以尼龙织物为基底材料和正摩擦材料,聚氨酯(PU)为负摩擦材料,聚二甲基硅氧烷(PDMS)为密封材料,导电银浆为电极层,在负摩擦层和电极层之间添加聚酰亚胺(PI)薄膜作为增强层,设计并制备一种基于摩擦纳米发电机(TENG)的气囊式可穿戴摩擦电... 以尼龙织物为基底材料和正摩擦材料,聚氨酯(PU)为负摩擦材料,聚二甲基硅氧烷(PDMS)为密封材料,导电银浆为电极层,在负摩擦层和电极层之间添加聚酰亚胺(PI)薄膜作为增强层,设计并制备一种基于摩擦纳米发电机(TENG)的气囊式可穿戴摩擦电传感器。利用扫描电子显微镜和电子示波器对该柔性器件的微观结构与输出性能进行表征,探究了PI膜厚度、气囊内部充气量、外部施加压力及其作用频率对输出性能的影响。结果表明:当PI膜厚度为15μm、充气量为1mL、压力作用频率为3Hz时输出性能最佳,达到电荷饱和状态后输出电压可达15V。由于气囊密封结构独特的回弹性和对外界压力变化的响应敏感性,该器件具有良好的灵敏度(0.34V/kPa)、优良的稳定性和防水性,可实现人体运动行为的实时检测,在可穿戴传感领域具有很大潜力。 展开更多
关键词 摩擦纳米发电机 柔性传感器 可穿戴 气囊结构
下载PDF
Triboelectric gait sensing analysis system for self-powered IoT-based human motion monitoring 被引量:1
18
作者 Leilei Zhao Xiao Guo +5 位作者 Yusen Pan Shouchuang Jia Liqiang Liu Walid ADaoud Peter Poechmueller Xiya Yang 《InfoMat》 SCIE CSCD 2024年第5期69-81,共13页
Quantitative analysis of gait parameters,such as stride frequency and step speed,is essential for optimizing physical exercise for the human body.However,the current electronic sensors used in human motion monitoring ... Quantitative analysis of gait parameters,such as stride frequency and step speed,is essential for optimizing physical exercise for the human body.However,the current electronic sensors used in human motion monitoring remain constrained by factors such as battery life and accuracy.This study developed a self-powered gait analysis system(SGAS)based on a triboelectric nanogenerator(TENG)fabricated electrospun composite nanofibers for motion monitoring and gait analysis for regulating exercise programs.The SGAS consists of a sensing module,a charging module,a data acquisition and processing module,and an Internet of Things(IoT)platform.Within the sensing module,two specialized sensing units,TENG-S1 and TENG-S2,are positioned at the forefoot and heel to generate synchronized signals in tandem with the user's footsteps.These signals are instrumental for real-time step count and step speed monitoring.The output of the two TENG units is significantly improved by systematically investigating and optimizing the electrospun composite nanofibers'composition,strength,and wear resistance.Additionally,a charge amplifier circuit is implemented to process the raw voltage signal,consequently bolstering the reliability of the sensing signal.This refined data is then ready for further reading and calculation by the micro-controller unit(MCU)during the signal transmission process.Finally,the well-conditioned signals are wirelessly transmitted to the IoT platform for data analysis,storage,and visualization,enhancing human motion monitoring. 展开更多
关键词 electrospun nanofiber gait analysis human motion monitoring self-powered system wearable triboelectric sensor
原文传递
A triboelectric nanogenerator-based self-powered long-distance wireless sensing platform for industries and environment monitoring
19
作者 Chi Zhang Kaihang Zhang +9 位作者 Jiaqi Lu Liangquan Xu Jianhui Wu Jie Li Shuting Liu Weipeng Xuan Jinkai Chen Hao Jin Shurong Dong Jikui Luo 《Nano Research》 SCIE EI CSCD 2024年第11期9704-9711,共8页
Self-powered wireless sensing system is particularly suitable for applications in intelligent manufacturing,smart healthcare etc.as it does not require an external power source.Triboelectric nanogenerator(TENG)is an e... Self-powered wireless sensing system is particularly suitable for applications in intelligent manufacturing,smart healthcare etc.as it does not require an external power source.Triboelectric nanogenerator(TENG)is an emerging energy harvester that can be used to power self-powered wireless sensors.The latest achievement in this area is the instantaneous self-powered wireless sensor,where the electric energy generated by the TENG is injected directly into the inductor-capacitor(LC)resonator to generate a decaying oscillating signal with encoded sensing information.However,the frequency is lower(typically【5 MHz)and the signal transmission distance is short(【3 m)limited by the near-field magnetic coupling,restricting its widespread applications.In this research,we propose a self-powered long-distance wireless sensing platform which utilizes a surface acoustic wave(SAW)resonator based radio-frequency oscillator to convert TENG energy into a high frequency signal with sensing information encoded.With this system,the sensing signal can be easily transmitted through the antenna for long distance.An optimized system is designed and conditional influences are fully investigated.Results show this self-powered wireless sensor system can perform wireless sensing for force,temperature and vibration at a distance up to 50 m. 展开更多
关键词 triboelectric nanogenerator(TENG) self-powered sensor radio frequency(RF) wireless sensor RF oscillator
原文传递
一体化摩擦电自供能气湿传感器研究进展
20
作者 刘勃豪 谢光忠 +3 位作者 段再华 袁震 蒋亚东 太惠玲 《电子学报》 EI CAS CSCD 北大核心 2024年第2期660-677,共18页
气湿传感器在环境检测、工农业生产以及医疗健康等领域应用甚广,然而主流的电阻、电容、光电气湿传感器需要外部供能工作,一方面电池的频繁更换与维护增加了泄露引起的环境污染,另一方面传感器对外界能源过于依赖将限制其在缺乏能源的... 气湿传感器在环境检测、工农业生产以及医疗健康等领域应用甚广,然而主流的电阻、电容、光电气湿传感器需要外部供能工作,一方面电池的频繁更换与维护增加了泄露引起的环境污染,另一方面传感器对外界能源过于依赖将限制其在缺乏能源的场合中正常工作.鉴于此,通过赋予气湿传感器自发收集外界环境能量并转化成电能的能力,以实现长期自主工作的自供能气湿传感器的理念应运而生.摩擦纳米发电机(TriboElectric NanoGenerator,TENG)作为一种新型能量俘获装置,由于其成本低、可结构设计且能量转换效率高等优势,在机械能收集与自供能传感器等领域应用广泛.进一步赋予TENG外界信息感知的能力,可实现单一器件兼具能量收集与气体敏感的功能,这种一体化摩擦电自供能传感器是目前传感器领域发展的一个热点方向.本文对一体化摩擦电自供能气湿传感器的研究现状与最新进展进行了综述,可从以下三个方面进行概括.(1)一体化摩擦电气湿传感器工作原理与气敏机理,并基于TENG的等效电路模型论述了影响敏感性能的参数—介电层摩擦电荷密度、介电层介电常数与电极层电导率;(2)一体化摩擦电气体传感器的研究进展,根据检测对象将其主要分为氨气(Ammonia,NH3)、乙醇以及其他有机挥发化合物(Volatile Organic Compound,VOC)气体传感器,介绍了其在呼出气、食品变质以及尾气排放检测场合的应用;(3)一体化摩擦电湿度传感器的研究进展,根据湿度对输出电信号幅值影响的不同将其主要分为电信号下降型传感器与电信号上升型传感器,介绍了其在非接触开关、皮肤湿度与尿不湿检测场合的应用.最后对一体化摩擦电气湿传感器的研究现状与面临的问题挑战进行了总结,并对其未来的发展方向进行了展望,可为相关研究提供参考. 展开更多
关键词 摩擦纳米发电机 一体化 自供能 敏感机理 气体传感器 湿度传感器
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部