Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers.In this work,we fabricated a fiber-shaped ...Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers.In this work,we fabricated a fiber-shaped stretchable and tailorable triboelectric nanogenerator(FST-TENG)based on the geometric construction of a steel wire as electrode and ingenious selection of silicone rubber as triboelectric layer.Owing to the great robustness and continuous conductivity,the FST-TENGs demonstrate high stability,stretchability,and even tailorability.For a single device with ~6 cm in length and ~3 mm in diameter,the open-circuit voltage of ~59.7 V,transferred charge of ~23.7 nC,short-circuit current of ~2.67 μA and average power of ~2.13 μW can be obtained at 2.5 Hz.By knitting several FST-TENGs to be a fabric or a bracelet,it enables to harvest human motion energy and then to drive a wearable electronic device.Finally,it can also be woven on dorsum of glove to monitor the movements of gesture,which can recognize every single finger,different bending angle,and numbers of bent finger by analyzing voltage signals.展开更多
Triboelectric nanogenerators (TENG), a unique technology for harvesting ambient mechanical energy based on triboelectric effect, have been proven to be a cost-effective, simple and robust approach for self-powered s...Triboelectric nanogenerators (TENG), a unique technology for harvesting ambient mechanical energy based on triboelectric effect, have been proven to be a cost-effective, simple and robust approach for self-powered systems. Here, we demonstrate a rationally designed triple-cantilever based TENG for harvesting vibration energy. With the assistance of nanowire arrays fabricated onto the surfaces of beryllium-copper alloy foils, the newly designed TENG produces an open-circuit voltage up to 101 V and a short-circuit current of 55.7 ~tA with a peak power density of 252.3 mW/m2. The TENG was systematically investigated and demonstrated as a direct power source for instantaneously lighting up 40 commercial light-emitting diodes. For the first time, a TENG device has been designed for harvesting vibration energy, especially at low frequencies, opening its application as a new energy technologv.展开更多
Progress has been developed in harvesting lowfrequency and irregular blue energy using a triboelectric–electromagnetic hybrid generator in recent years. However,the design of the high-efficiency, mechanically durable...Progress has been developed in harvesting lowfrequency and irregular blue energy using a triboelectric–electromagnetic hybrid generator in recent years. However,the design of the high-efficiency, mechanically durable hybrid structure is still challenging. In this study, we report a fully packaged triboelectric–electromagnetic hybrid generator(TEHG), in which magnets were utilized as the trigger to drive contact–separation-mode triboelectric nanogenerators(CS-TENGs) and coupled with copper coils to operate rotary freestanding-mode electromagnetic generators(RF-EMGs). The magnet pairs that produce attraction were used to transfer the external mechanical energy to the CS-TENGs, and packaging of the CS-TENGpart was achieved to protect it from the ambient environment. Under a rotatory speed of 100 rpm, the CS-TENGs enabled the TEHG to deliver an output voltage, current,and average power of 315.8 V, 44.6 μA, and ~ 90.7 μW,and the output of the RF-EMGs was 0.59 V, 1.78 m A, and 79.6 μW, respectively. The cylinder-like structure made the TEHG more easily driven by water flow and demonstrated to work as a practical power source to charge commercial capacitors. It can charge a 33μF capacitor from 0 to 2.1 V in 84 s, and the stored energy in the capacitor can drive an electronic thermometer and form a self-powered water-temperature sensing system.展开更多
A triboelectric nanogenerator (TENG) is a simple and cost effective device that converts ambient mechanical energy into electricity based on the surface contact electrification of thin films. The limited surface cha...A triboelectric nanogenerator (TENG) is a simple and cost effective device that converts ambient mechanical energy into electricity based on the surface contact electrification of thin films. The limited surface charge density may affect the overall performance of the TENG. In this paper, a novel electret film based TENG (E-TENG) fabricated by corona charging is proposed that greatly enhances the effective surface charge density of the thin films as compared to those subjected to contact electrification. The short-circuit current, transferred electric charge density, and open-circuit voltage of the E-TENG have been investigated, using different corona charging voltages, pinpoint distances and times in order to explore the optimum experimental conditions. The short-circuit current, transferred electric charge density, and open-circuit voltage of the E-TENG are found to be about seven times larger than those of the ordinary polytetrafluoroethylene (PTFE) film based TENG. Based on corona charging, several multilayered E-TENGs have been fabricated, and the short-circuit current, transferred electric charge density, and open-circuit voltage of the E-TENGs with different number of layers are studied for achieving optimal performances. This work offers an effective approach for improving the effective surface charge density and thereby increasing the output capability of the TENG, which would greatly promote TENG applications in self-powered portable electronics and sensor networks.展开更多
Harvesting ambient mechanical energy is a key technology for realizing self-powered electronics. With advantages of stability and durabilid, a liquid-solid-based triboelectric nanogenerator (TENG) has recently drawn...Harvesting ambient mechanical energy is a key technology for realizing self-powered electronics. With advantages of stability and durabilid, a liquid-solid-based triboelectric nanogenerator (TENG) has recently drawn much attention. However, the impacts of liquid properties on the TENG performance and the related working principle are still unclear. We assembled herein a U-tube TENG based on the liquid-solid mode and applied 11 liquids to study the effects of liquid properties on the TENG output performance. The results confirmed that the key factors influencing the output are polarity, dielectric constant, and affinity to fluorinated ethylene propylene (FEP). Among the 11 liquids, the pure water-based U-tube TENG exhibited the best output with an open-circuit voltage (Voc) of 81.7 V and a short-circuit current (Isc) of 0.26 μA for the shaking mode (0.5 Hz), which can further increase to 93.0 V and 0.48 μA, respectively, for the horizontal shifting mode (1.25 Hz). The U-tube TENG can be utilized as a self-powered concentration sensor (component concentration or metal ion concentration) for an aqueous solution with an accuracy higher than 92%. Finally, an upgraded sandwich-like water-FEP U-tube TENG was applied to harvest water-wave energy, showing a high output with Voc of 350 V, Isc of 1.75 μA, and power density of 2.04 W/m3. We successfully lighted up 60 LEDs and powered a temperature-humidity meter. Given its high output performance, the water-FEP U-tube TENG is a very promising approach for harvesting water-wave energy for self-powered electronics.展开更多
We report triboelectric nanogenerators (TENGs) composed of a flexible and cost-effective gold-coated conductive textile (CT) to convert wind energy into electricity. The Au-coated CT is employed because of its hig...We report triboelectric nanogenerators (TENGs) composed of a flexible and cost-effective gold-coated conductive textile (CT) to convert wind energy into electricity. The Au-coated CT is employed because of its high surface roughness resulting from Au nanodots distributed on microsized fibers. Thus, the Au-coated CT with nano/microarchitecture plays an important role in enhancing the effective contact area as well as the output performance of the TENG. Moreover, the surface roughness of the Au-coated CT is controlled by adjusting the Au thermal deposition time or tailoring the diameter of the Au nanodots. At an applied wind speed of 10 m.s-1, a wind-based TENG (W-TENG) with dimensions of 75 mm × 12 mm ×25 mm produces an open-circuit voltage (Voc) of - 39 V and a short-circuit current (Isc) of - 3 A by using the airflow-induced vibrations of an optimized Au-coated CT between two flat polydimethylsiloxane (PDMS) layers. To further specify the device performance, the electric output of the W-TENG is analyzed by varying several parameters such as the distance between the PDMS layer and Au-coated CT, applied wind speed, external load resistance, and surface roughness of the PDMS layers. Introducing an inverse micropyramid architecture on the PDMS layers further improves the output performance of the W-TENG, which exhibits the highest Voc (- 49 V) and Isc (- 5μA) values at an applied wind speed of 6.8 m.s-1. Additionally, the reliability of the W-TENG is also tested by measuring its output current during long-term cyclic operation. Furthermore, the rectified output signals observed by the W-TENG device are used as a direct power source to light 45 green commercial light-emitting diodes connected in series and also to charge capacitors (100 and 4.7μF). Finally, the output performance of the W-TENG device in an actual windy situation is also investigated.展开更多
A triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) were hybridized to harvest the human mechanical energy. By an effective conjunction of triboelectrificafion and electromagnetic induction...A triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) were hybridized to harvest the human mechanical energy. By an effective conjunction of triboelectrificafion and electromagnetic induction, the hybridized nanogenerator with a radius of 2 cm and height of 1.2 cm could charge a 1,000 bkF capacitor to 5.09 V after 100 cycles of vibration. This mini-sized hybrid nanogenerator could then be embedded in shoes to serve as an energy cell. Typical outdoor applications--including driving with a Global Positioning System (GPS) device, charging a Li-ion battery and a cell phone--were successfully demonstrated, suggesting its potential application in smart wearable electronics and future suits of soldiers.展开更多
Triboelectric nanogenerators(TENGs)are promising electric energy harvesting devices as they can produce renewable clean energy using mechanical excitations from the environment.Several designs of triboelectric energy ...Triboelectric nanogenerators(TENGs)are promising electric energy harvesting devices as they can produce renewable clean energy using mechanical excitations from the environment.Several designs of triboelectric energy harvesters relying on biocompatible and eco-friendly natural materials have been introduced in recent years.Their ability to provide customizable self-powering for a wide range of applications,including biomedical devices,pressure and chemical sensors,and battery charging appliances,has been demonstrated.This review summarizes major advances already achieved in the field of triboelectric energy harvesting using biocompatible and eco-friendly natural materials.A rigorous,comparative,and critical analysis of preparation and testing methods is also presented.Electric power up to 14 mW was already achieved for the dry leaf/polyvinylidene fluoride-based TENG devices.These findings highlight the potential of eco-friendly self-powering systems and demonstrate the unique properties of the plants to generate electric energy for multiple applications.展开更多
Polyaniline nanofibers (PANI NFs) are introduced to construct a wind-driven triboelectric nanogenerator (TENG) as a new power source for self-powered cathodic protection. PANI NFs serve as a friction layer to gene...Polyaniline nanofibers (PANI NFs) are introduced to construct a wind-driven triboelectric nanogenerator (TENG) as a new power source for self-powered cathodic protection. PANI NFs serve as a friction layer to generate charges by harvesting wind energy as well as a conducting layer to transfer charges in TENG. A PANI NFs-based TENG exhibits a high output performance with a maximum output voltage of 375 V, short current circuit of 248 μA, and corresponding power of 14.5 mW under a wind speed of 15 m/s. Additionally, a self-powered anticorrosion system is constructed by using a PANI-based TENG as the power source. The immersion experiment and electrochemical measurements demonstrate that carbon steel coupled with the wind-driven TENG is effectively protected with an evident open circuit potential drop and negative shift in the corrosion potential. The smart self-powered device is promising in terms of applications to protect metals from corrosion by utilizing wind energy in ambient conditions.展开更多
Since the invention of the triboelectric nanogenerator (TENG) in 2012, it has become one of the most vital innovations in energy harvesting technologies. The TENG has seen enormous progress to date, particularly in ...Since the invention of the triboelectric nanogenerator (TENG) in 2012, it has become one of the most vital innovations in energy harvesting technologies. The TENG has seen enormous progress to date, particularly in applications for energy harvesting and self-powered sensing. It starts with the simple working principles of the triboelectric effect and electrostatic induction, but can scavenge almost any kind of ambient mechanical energy in our daily life into electricity. Extraordinary output performance optimization of the TENG has been achieved, with high area power density and energy conversion efficiency. Moreover, TENGs can also be utilized as self-powered active sensors to monitor many environmental parameters. This review describes the recent progress in mainstream energy harvesting and self-powered sensing research based on TENG technology. The birth and development of the TENG are introduced, following which structural designs and performance optimizations for output performance enhancement of the TENG are discussed. The major applications of the TENG as a sustainable power source or a self-powered sensor are presented. The TENG, with rationally designed structures, can convert irregular and mostly low-frequency mechanical energies from the environment, such as human motion, mechanical vibration, moving automobiles, wind, raindrops, and ocean waves. In addition, the development of self-powered active sensors for a variety of environmental simulations based on the TENG is presented. The TENG plays a great role in promoting the development of emerging Internet of Things, which can make everyday objects connect more smartly and energy- efficiently in the coming years. Finally, the future directions and perspectives of the TENG are outlined. The TENG is not only a sustainable micro-power source for small devices, but also serves as a potential macro-scale generator of power from water waves in the future.展开更多
基金supported by National Natural Science Foundation of China (NSFC) (No. 61804103)National Key R&D Program of China (No. 2017YFA0205002)+8 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Nos. 18KJA535001 and 14KJB 150020)Natural Science Foundation of Jiangsu Province of China (Nos. BK20170343 and BK20180242)China Postdoctoral Science Foundation (No. 2017M610346)State Key Laboratory of Silicon Materials, Zhejiang University (No. SKL2018-03)Nantong Municipal Science and Technology Program (No. GY12017001)Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University (KSL201803)supported by Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the 111 ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devices
文摘Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers.In this work,we fabricated a fiber-shaped stretchable and tailorable triboelectric nanogenerator(FST-TENG)based on the geometric construction of a steel wire as electrode and ingenious selection of silicone rubber as triboelectric layer.Owing to the great robustness and continuous conductivity,the FST-TENGs demonstrate high stability,stretchability,and even tailorability.For a single device with ~6 cm in length and ~3 mm in diameter,the open-circuit voltage of ~59.7 V,transferred charge of ~23.7 nC,short-circuit current of ~2.67 μA and average power of ~2.13 μW can be obtained at 2.5 Hz.By knitting several FST-TENGs to be a fabric or a bracelet,it enables to harvest human motion energy and then to drive a wearable electronic device.Finally,it can also be woven on dorsum of glove to monitor the movements of gesture,which can recognize every single finger,different bending angle,and numbers of bent finger by analyzing voltage signals.
基金This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences (Award No. DE-FG02-07ER46394), National Science Foundation (NSF) (No. 0946418), and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-M13). Patents have been filed based on the research results presented in this manuscript.
文摘Triboelectric nanogenerators (TENG), a unique technology for harvesting ambient mechanical energy based on triboelectric effect, have been proven to be a cost-effective, simple and robust approach for self-powered systems. Here, we demonstrate a rationally designed triple-cantilever based TENG for harvesting vibration energy. With the assistance of nanowire arrays fabricated onto the surfaces of beryllium-copper alloy foils, the newly designed TENG produces an open-circuit voltage up to 101 V and a short-circuit current of 55.7 ~tA with a peak power density of 252.3 mW/m2. The TENG was systematically investigated and demonstrated as a direct power source for instantaneously lighting up 40 commercial light-emitting diodes. For the first time, a TENG device has been designed for harvesting vibration energy, especially at low frequencies, opening its application as a new energy technologv.
基金funded by Natural Science Foundation of China (NSFC) (Grant No. U1432249)the National Key R&D Program of China (Grant 2017YFA0205002)+5 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)supported by Collaborative Innovation Center of Suzhou Nano Science & Technologythe support from China Postdoctoral Science Foundation (2017M610346)Natural Science Foundation of Jiangsu Province of China (BK20170343)Nantong Municipal Science and Technology Programthe support from Jiangsu University National Science Research Program (16KJB110021)
文摘Progress has been developed in harvesting lowfrequency and irregular blue energy using a triboelectric–electromagnetic hybrid generator in recent years. However,the design of the high-efficiency, mechanically durable hybrid structure is still challenging. In this study, we report a fully packaged triboelectric–electromagnetic hybrid generator(TEHG), in which magnets were utilized as the trigger to drive contact–separation-mode triboelectric nanogenerators(CS-TENGs) and coupled with copper coils to operate rotary freestanding-mode electromagnetic generators(RF-EMGs). The magnet pairs that produce attraction were used to transfer the external mechanical energy to the CS-TENGs, and packaging of the CS-TENGpart was achieved to protect it from the ambient environment. Under a rotatory speed of 100 rpm, the CS-TENGs enabled the TEHG to deliver an output voltage, current,and average power of 315.8 V, 44.6 μA, and ~ 90.7 μW,and the output of the RF-EMGs was 0.59 V, 1.78 m A, and 79.6 μW, respectively. The cylinder-like structure made the TEHG more easily driven by water flow and demonstrated to work as a practical power source to charge commercial capacitors. It can charge a 33μF capacitor from 0 to 2.1 V in 84 s, and the stored energy in the capacitor can drive an electronic thermometer and form a self-powered water-temperature sensing system.
基金Acknowledgements The project is supported by National Natural Science Foundation of China (Nos. 51475099 and 51432005),Beijing Natural Science Foundation (No. 4163077), the "thousands talents" program for the pioneer researcher and his innovation team, China, and the Youth Innovation Promotion Association, CAS.
文摘A triboelectric nanogenerator (TENG) is a simple and cost effective device that converts ambient mechanical energy into electricity based on the surface contact electrification of thin films. The limited surface charge density may affect the overall performance of the TENG. In this paper, a novel electret film based TENG (E-TENG) fabricated by corona charging is proposed that greatly enhances the effective surface charge density of the thin films as compared to those subjected to contact electrification. The short-circuit current, transferred electric charge density, and open-circuit voltage of the E-TENG have been investigated, using different corona charging voltages, pinpoint distances and times in order to explore the optimum experimental conditions. The short-circuit current, transferred electric charge density, and open-circuit voltage of the E-TENG are found to be about seven times larger than those of the ordinary polytetrafluoroethylene (PTFE) film based TENG. Based on corona charging, several multilayered E-TENGs have been fabricated, and the short-circuit current, transferred electric charge density, and open-circuit voltage of the E-TENGs with different number of layers are studied for achieving optimal performances. This work offers an effective approach for improving the effective surface charge density and thereby increasing the output capability of the TENG, which would greatly promote TENG applications in self-powered portable electronics and sensor networks.
文摘Harvesting ambient mechanical energy is a key technology for realizing self-powered electronics. With advantages of stability and durabilid, a liquid-solid-based triboelectric nanogenerator (TENG) has recently drawn much attention. However, the impacts of liquid properties on the TENG performance and the related working principle are still unclear. We assembled herein a U-tube TENG based on the liquid-solid mode and applied 11 liquids to study the effects of liquid properties on the TENG output performance. The results confirmed that the key factors influencing the output are polarity, dielectric constant, and affinity to fluorinated ethylene propylene (FEP). Among the 11 liquids, the pure water-based U-tube TENG exhibited the best output with an open-circuit voltage (Voc) of 81.7 V and a short-circuit current (Isc) of 0.26 μA for the shaking mode (0.5 Hz), which can further increase to 93.0 V and 0.48 μA, respectively, for the horizontal shifting mode (1.25 Hz). The U-tube TENG can be utilized as a self-powered concentration sensor (component concentration or metal ion concentration) for an aqueous solution with an accuracy higher than 92%. Finally, an upgraded sandwich-like water-FEP U-tube TENG was applied to harvest water-wave energy, showing a high output with Voc of 350 V, Isc of 1.75 μA, and power density of 2.04 W/m3. We successfully lighted up 60 LEDs and powered a temperature-humidity meter. Given its high output performance, the water-FEP U-tube TENG is a very promising approach for harvesting water-wave energy for self-powered electronics.
文摘We report triboelectric nanogenerators (TENGs) composed of a flexible and cost-effective gold-coated conductive textile (CT) to convert wind energy into electricity. The Au-coated CT is employed because of its high surface roughness resulting from Au nanodots distributed on microsized fibers. Thus, the Au-coated CT with nano/microarchitecture plays an important role in enhancing the effective contact area as well as the output performance of the TENG. Moreover, the surface roughness of the Au-coated CT is controlled by adjusting the Au thermal deposition time or tailoring the diameter of the Au nanodots. At an applied wind speed of 10 m.s-1, a wind-based TENG (W-TENG) with dimensions of 75 mm × 12 mm ×25 mm produces an open-circuit voltage (Voc) of - 39 V and a short-circuit current (Isc) of - 3 A by using the airflow-induced vibrations of an optimized Au-coated CT between two flat polydimethylsiloxane (PDMS) layers. To further specify the device performance, the electric output of the W-TENG is analyzed by varying several parameters such as the distance between the PDMS layer and Au-coated CT, applied wind speed, external load resistance, and surface roughness of the PDMS layers. Introducing an inverse micropyramid architecture on the PDMS layers further improves the output performance of the W-TENG, which exhibits the highest Voc (- 49 V) and Isc (- 5μA) values at an applied wind speed of 6.8 m.s-1. Additionally, the reliability of the W-TENG is also tested by measuring its output current during long-term cyclic operation. Furthermore, the rectified output signals observed by the W-TENG device are used as a direct power source to light 45 green commercial light-emitting diodes connected in series and also to charge capacitors (100 and 4.7μF). Finally, the output performance of the W-TENG device in an actual windy situation is also investigated.
文摘A triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) were hybridized to harvest the human mechanical energy. By an effective conjunction of triboelectrificafion and electromagnetic induction, the hybridized nanogenerator with a radius of 2 cm and height of 1.2 cm could charge a 1,000 bkF capacitor to 5.09 V after 100 cycles of vibration. This mini-sized hybrid nanogenerator could then be embedded in shoes to serve as an energy cell. Typical outdoor applications--including driving with a Global Positioning System (GPS) device, charging a Li-ion battery and a cell phone--were successfully demonstrated, suggesting its potential application in smart wearable electronics and future suits of soldiers.
基金project CICECO-Aveiro Institute of Materials,refs. UIDB/50011/2020 & UIDP/50011/2020financed by national funds through the FCT/MEC.S.K.and A.K.were partly supported by FCT (Portugal) through the project "BioPiezo"-PTDC/ CTM-CTM/31679/2017(CENTRO-01-0145-FEDER-031679)+3 种基金supported by FCT,through the grant reference SFRH/BPD/117475/2016partly supported by FCT through the project "SelfMED" (POCI-01-0145FEDER-031132)funded by national funds (OE),through FCT-Fundagao para a Ciencia e a Tecnologia,I.P., in the scope of the framework contract foreseen in the numbers 4, 5,and 6 of the article 23,of the Decree-Law 57/2016,of August 29,changed by Law 57/2017,of July 19.supported by the Ministry of Education and Science of the Russian Federation in the framework of the Increase Competitiveness Program of NUST 《MISiS》 (No.K2-2019-015)
文摘Triboelectric nanogenerators(TENGs)are promising electric energy harvesting devices as they can produce renewable clean energy using mechanical excitations from the environment.Several designs of triboelectric energy harvesters relying on biocompatible and eco-friendly natural materials have been introduced in recent years.Their ability to provide customizable self-powering for a wide range of applications,including biomedical devices,pressure and chemical sensors,and battery charging appliances,has been demonstrated.This review summarizes major advances already achieved in the field of triboelectric energy harvesting using biocompatible and eco-friendly natural materials.A rigorous,comparative,and critical analysis of preparation and testing methods is also presented.Electric power up to 14 mW was already achieved for the dry leaf/polyvinylidene fluoride-based TENG devices.These findings highlight the potential of eco-friendly self-powering systems and demonstrate the unique properties of the plants to generate electric energy for multiple applications.
基金Thanks for the financial support of the National Natural Science Foundation of China (Nos. 21573259 and 21603242), the outstanding youth fund of Gansu Province (No. 1606RJDA31) and the "Hundred Talents Program" of Chinese Academy of Sciences (D. A. W.).
文摘Polyaniline nanofibers (PANI NFs) are introduced to construct a wind-driven triboelectric nanogenerator (TENG) as a new power source for self-powered cathodic protection. PANI NFs serve as a friction layer to generate charges by harvesting wind energy as well as a conducting layer to transfer charges in TENG. A PANI NFs-based TENG exhibits a high output performance with a maximum output voltage of 375 V, short current circuit of 248 μA, and corresponding power of 14.5 mW under a wind speed of 15 m/s. Additionally, a self-powered anticorrosion system is constructed by using a PANI-based TENG as the power source. The immersion experiment and electrochemical measurements demonstrate that carbon steel coupled with the wind-driven TENG is effectively protected with an evident open circuit potential drop and negative shift in the corrosion potential. The smart self-powered device is promising in terms of applications to protect metals from corrosion by utilizing wind energy in ambient conditions.
文摘Since the invention of the triboelectric nanogenerator (TENG) in 2012, it has become one of the most vital innovations in energy harvesting technologies. The TENG has seen enormous progress to date, particularly in applications for energy harvesting and self-powered sensing. It starts with the simple working principles of the triboelectric effect and electrostatic induction, but can scavenge almost any kind of ambient mechanical energy in our daily life into electricity. Extraordinary output performance optimization of the TENG has been achieved, with high area power density and energy conversion efficiency. Moreover, TENGs can also be utilized as self-powered active sensors to monitor many environmental parameters. This review describes the recent progress in mainstream energy harvesting and self-powered sensing research based on TENG technology. The birth and development of the TENG are introduced, following which structural designs and performance optimizations for output performance enhancement of the TENG are discussed. The major applications of the TENG as a sustainable power source or a self-powered sensor are presented. The TENG, with rationally designed structures, can convert irregular and mostly low-frequency mechanical energies from the environment, such as human motion, mechanical vibration, moving automobiles, wind, raindrops, and ocean waves. In addition, the development of self-powered active sensors for a variety of environmental simulations based on the TENG is presented. The TENG plays a great role in promoting the development of emerging Internet of Things, which can make everyday objects connect more smartly and energy- efficiently in the coming years. Finally, the future directions and perspectives of the TENG are outlined. The TENG is not only a sustainable micro-power source for small devices, but also serves as a potential macro-scale generator of power from water waves in the future.