期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于随钻振动信号与深度学习的岩性智能预测方法
被引量:
1
1
作者
王胜
赖昆
+4 位作者
张拯
柏君
罗中斌
李冰乐
张洁
《煤田地质与勘探》
EI
CAS
CSCD
北大核心
2023年第9期51-63,共13页
岩性智能预测在地质钻探中具有重要意义,可以提高勘探、开采效率和成果质量。基于钻进过程中钻头破碎岩石产生的振动信号,提出一种岩性随钻智能预测方法。选取7类尺寸相同的不同岩性的岩石,并设计微钻实验方案,对岩石施加不同钻速、转...
岩性智能预测在地质钻探中具有重要意义,可以提高勘探、开采效率和成果质量。基于钻进过程中钻头破碎岩石产生的振动信号,提出一种岩性随钻智能预测方法。选取7类尺寸相同的不同岩性的岩石,并设计微钻实验方案,对岩石施加不同钻速、转速以采集多钻进条件下的随钻三轴振动信号,对信号进行预处理滤除干扰信息,通过短时傅里叶变换生成表征信号时频域特征的时频图像,再利用多种数据增强方法增加图像数量并建立为数据库,以增强模型鲁棒性和泛化能力。改进深度学习中VGG11(Visual Geometry Group)卷积神经网络算法,将数据库划分为训练集∶测试集=8∶2,对训练集图像的有效信息进行特征提取、学习、迭代训练以获得岩性智能预测模型,并不断调整模型的3个超参数(学习率、批处理大小、迭代次数),拟合测试集和训练集损失函数曲线以提高模型预测精度。最后用测试集对模型进行多指标评估。结果表明:基于随钻振动数据训练得到的岩性智能预测模型泛化能力强,具有高预测精度,岩性整体预测准确率达到96.85%。重点讨论了数据集数量对岩性预测准确率的影响;不同的钻进条件会引起随钻振动信号产生一定规律性的变化,岩石性质会使得振动信号在三轴方向上有所变化;X、Y、Z轴信号表征着钻进过程中钻头破碎岩石的不同过程。提出的岩性实时智能预测方法为钻探工程现场中岩性预测提供了一定的依据和借鉴。
展开更多
关键词
岩性智能预测
随钻三轴振动信号
短时傅里叶变换
数据增强
深度学习
改进VGG11算法
下载PDF
职称材料
题名
基于随钻振动信号与深度学习的岩性智能预测方法
被引量:
1
1
作者
王胜
赖昆
张拯
柏君
罗中斌
李冰乐
张洁
机构
成都理工大学地质灾害防治与地质环境保护国家重点实验室
出处
《煤田地质与勘探》
EI
CAS
CSCD
北大核心
2023年第9期51-63,共13页
基金
珠峰科学研究计划项目(80000-2022ZF11411)。
文摘
岩性智能预测在地质钻探中具有重要意义,可以提高勘探、开采效率和成果质量。基于钻进过程中钻头破碎岩石产生的振动信号,提出一种岩性随钻智能预测方法。选取7类尺寸相同的不同岩性的岩石,并设计微钻实验方案,对岩石施加不同钻速、转速以采集多钻进条件下的随钻三轴振动信号,对信号进行预处理滤除干扰信息,通过短时傅里叶变换生成表征信号时频域特征的时频图像,再利用多种数据增强方法增加图像数量并建立为数据库,以增强模型鲁棒性和泛化能力。改进深度学习中VGG11(Visual Geometry Group)卷积神经网络算法,将数据库划分为训练集∶测试集=8∶2,对训练集图像的有效信息进行特征提取、学习、迭代训练以获得岩性智能预测模型,并不断调整模型的3个超参数(学习率、批处理大小、迭代次数),拟合测试集和训练集损失函数曲线以提高模型预测精度。最后用测试集对模型进行多指标评估。结果表明:基于随钻振动数据训练得到的岩性智能预测模型泛化能力强,具有高预测精度,岩性整体预测准确率达到96.85%。重点讨论了数据集数量对岩性预测准确率的影响;不同的钻进条件会引起随钻振动信号产生一定规律性的变化,岩石性质会使得振动信号在三轴方向上有所变化;X、Y、Z轴信号表征着钻进过程中钻头破碎岩石的不同过程。提出的岩性实时智能预测方法为钻探工程现场中岩性预测提供了一定的依据和借鉴。
关键词
岩性智能预测
随钻三轴振动信号
短时傅里叶变换
数据增强
深度学习
改进VGG11算法
Keywords
intelligent
lithology
prediction
triaxial
vibration
signals
while
drilling
short-time
Fourier
transform
data
augmentation
deep
learning
improved
VGG11
algorithm
分类号
P634 [天文地球—地质矿产勘探]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于随钻振动信号与深度学习的岩性智能预测方法
王胜
赖昆
张拯
柏君
罗中斌
李冰乐
张洁
《煤田地质与勘探》
EI
CAS
CSCD
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部